当前位置: X-MOL 学术Sci. Robot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight
Science Robotics ( IF 25.0 ) Pub Date : 2022-05-11 , DOI: 10.1126/scirobotics.abg5913
Songnan Bai 1 , Qingning He 2 , Pakpong Chirarattananon 1
Affiliation  

Among small rotorcraft, the use of multiple compact rotors in a mechanically simple design leads to impressive agility and maneuverability but inevitably results in high energetic demand and acutely restricted endurance. Small spinning propellers used in these vehicles contrast with large lifting surfaces of winged seeds, which spontaneously gyrate into stable autorotation upon falling. The pronounced aerodynamic surfaces and delayed stalls are believed key to efficient unpowered flight. Here, the bioinspired principles are adopted to notably reduce the power consumption of small aerial vehicles by means of a samara-inspired robot. We report a dual-wing 35.1-gram aircraft capable of hovering flight via powered gyration. Equipped with two rotors, the underactuated robot with oversized revolving wings, designed to leverage unsteady aerodynamics, was optimized for boosted flight efficiency. Through the analysis of flight dynamics and stability, the vehicle was designed for passive attitude stability, eliminating the need for fast feedback to stay upright. To this end, the drone demonstrates flight with a twofold decrease in power consumption when compared with benchmark multirotor robots. Exhibiting the power loading of 8.0 grams per watt, the vehicle recorded a flight time of 14.9 minutes and up to 24.5 minutes when equipped with a larger battery. Taking advantage of the fast revolving motion to overcome the severe underactuation, we also realized position-controlled flight and illustrated examples of mapping and surveillance applications with a 21.5-gram payload.

中文翻译:

具有被动姿态稳定性和高效悬停飞行的仿生旋翼无人机

在小型旋翼飞机中,在机械简单的设计中使用多个紧凑型旋翼会带来令人印象深刻的敏捷性和机动性,但不可避免地会导致高能量需求和严重受限的续航能力。这些车辆中使用的小型旋转螺旋桨与带翅膀的种子的大提升表面形成对比,后者在落下时会自发地旋转成稳定的自转。明显的空气动力学表面和延迟失速被认为是高效无动力飞行的关键。在这里,采用仿生原理,通过受翼翼启发的机器人显着降低小型飞行器的功耗。我们报告了一种双翼 35.1 克飞机,能够通过动力回转悬停飞行。配备两个转子,具有超大旋转翼的欠驱动机器人,旨在利用不稳定的空气动力学,为提高飞行效率而优化。通过对飞行动力学和稳定性的分析,该飞行器专为被动姿态稳定性而设计,无需快速反馈即可保持直立状态。为此,与基准多旋翼机器人相比,该无人机的飞行功耗降低了两倍。该飞行器的功率负载为每瓦 8.0 克,飞行时间为 14.9 分钟,配备更大电池时最长可达 24.5 分钟。利用快速旋转运动来克服严重的欠驱动,我们还实现了位置控制飞行,并举例说明了具有 21.5 克有效载荷的测绘和监视应用。该车辆专为被动姿态稳定性而设计,无需快速反馈即可保持直立。为此,与基准多旋翼机器人相比,该无人机的飞行功耗降低了两倍。该飞行器的功率负载为每瓦 8.0 克,飞行时间为 14.9 分钟,配备更大电池时最长可达 24.5 分钟。利用快速旋转运动来克服严重的欠驱动,我们还实现了位置控制飞行,并举例说明了具有 21.5 克有效载荷的测绘和监视应用。该车辆专为被动姿态稳定性而设计,无需快速反馈即可保持直立。为此,与基准多旋翼机器人相比,该无人机的飞行功耗降低了两倍。该飞行器的功率负载为每瓦 8.0 克,飞行时间为 14.9 分钟,配备更大电池时最长可达 24.5 分钟。利用快速旋转运动来克服严重的欠驱动,我们还实现了位置控制飞行,并举例说明了具有 21.5 克有效载荷的测绘和监视应用。该飞行器的功率负载为每瓦 8.0 克,飞行时间为 14.9 分钟,配备更大电池时最长可达 24.5 分钟。利用快速旋转运动来克服严重的欠驱动,我们还实现了位置控制飞行,并举例说明了具有 21.5 克有效载荷的测绘和监视应用。该飞行器的功率负载为每瓦 8.0 克,飞行时间为 14.9 分钟,配备更大电池时最长可达 24.5 分钟。利用快速旋转运动来克服严重的欠驱动,我们还实现了位置控制飞行,并举例说明了具有 21.5 克有效载荷的测绘和监视应用。
更新日期:2022-05-11
down
wechat
bug