当前位置: X-MOL 学术Geoderma › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting Langmuir model parameters for tungsten adsorption in heterogeneous soils using compositional signatures
Geoderma ( IF 6.1 ) Pub Date : 2022-05-11 , DOI: 10.1016/j.geoderma.2022.115924
Mark Chappell 1 , Joshua LeMonte 1, 2 , Christian McGrath 1 , Ranju Karna 3 , Renee Styles 3 , Christine Miller 1 , Lesley Miller 1 , Maggie Waites 1 , Matthew Middleton 1 , Cynthia Price 1 , Cameron Chappell 1 , Haley Dozier 4 , Ashley Abraham 4 , Althea Henslee 4 , Andrew Strelzoff 4
Affiliation  

Metallic tungsten (W) is a highly dense material of increasing importance to the U.S. Army as a strategic, non-radioactive replacement for depleted uranium. While there is a growing body of evidence regarding the mechanistic behavior of ionic W (formed after the spontaneous oxidation of metal) in the environment, predicting its environmental fate remains challenging, owing to the widespread geochemical heterogeneity of soils. Therefore, we developed W adsorption prediction models by creating different functional “compositions” of the chemical and physical characteristics for different soil “types” (a non-specific yet commonly used to term to designate different soils). A relatively small dataset consisting of twenty soils (possessing six different soil “types” from across the U.S.) were evaluated for W adsorption behavior. Physical and chemical soil data were separated into water-extracted (WE), bulk, and particle-size distribution (PSD) compositions, and center log-ratio (clr) transformed. Classification models built using extremely randomized trees (ERT) showed that the compositions' accuracies were WE > Bulk > PSD at the Order and Suborder levels. W's adsorption isotherms were constructed using batch equilibrium experiments and modeled against the Langmuir model, where Smax = calculated adsorption maximum, K1/L = inverse Langmuir affinity coefficient. Afterward, both the ERT and ensemble, or stacked, ERT models (by addition of Order and/or Suborder taxonomic labels as ensemble classifiers) were developed for predicting the Smax and K1/L parameters based on the different compositions. In general, model accuracies were substantially increased by the addition of the labels (stacked models). Feature importance calculations pointed to a wide range of potential chemical mechanisms simultaneously controlling W adsorption, laying the groundwork for more detailed in-situ elemental speciation studies. Overall, this work showcased a new technological capability allowing for accurately predicting W adsorption on a wide variety of morphological soil designations.

Capsule: This work found that soil morphological designations greatly improved the accuracy of Langmuir adsorption predictions of CoDA-transformed characterization data.



中文翻译:

使用成分特征预测异质土壤中钨吸附的 Langmuir 模型参数

金属钨 (W) 是一种高密度材料,作为贫化铀的战略性非放射性替代品,对美国陆军来说越来越重要。虽然越来越多的证据表明离子 W(金属自发氧化后形成)在环境中的机械行为,但由于土壤广泛的地球化学异质性,预测其环境归宿仍然具有挑战性。因此,我们通过为不同的土壤“类型”(一种非特异性但通常用于指定不同土壤的术语)创建化学和物理特性的不同功能“组成”来开发 W 吸附预测模型。对包含 20 种土壤(拥有来自美国各地的六种不同土壤“类型”)组成的相对较小的数据集进行了 W 吸附行为的评估。(clr)转换。使用极端随机树 (ERT) 构建的分类模型表明,在 Order 和 Suborder 级别上,组合的准确度是 WE > Bulk > PSD。W 的吸附等温线是使用批次平衡实验构建的,并针对 Langmuir 模型建模,其中 S max  = 计算的吸附最大值,K 1/L  = 反 Langmuir 亲和系数。之后,开发了 ERT 和集成或堆叠 ERT 模型(通过添加顺序和/或子分类标签作为集成分类器)来预测 S max和 K 1/L基于不同成分的参数。通常,通过添加标签(堆叠模型)可以显着提高模型精度。特征重要性计算指出了同时控制 W 吸附的多种潜在化学机制,为更详细的原位元素形态研究奠定了基础。总体而言,这项工作展示了一种新技术能力,可以准确预测各种形态土壤名称上的 W 吸附。

胶囊:这项工作发现,土壤形态名称大大提高了对 CoDA 转换表征数据的 Langmuir 吸附预测的准确性。

更新日期:2022-05-11
down
wechat
bug