当前位置: X-MOL 学术Neuron › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila
Neuron ( IF 16.2 ) Pub Date : 2022-05-06 , DOI: 10.1016/j.neuron.2022.04.008
Terufumi Fujiwara 1 , Margarida Brotas 1 , M Eugenia Chiappe 1
Affiliation  

Flexible mapping between activity in sensory systems and movement parameters is a hallmark of motor control. This flexibility depends on the continuous comparison of short-term postural dynamics and the longer-term goals of an animal, thereby necessitating neural mechanisms that can operate across multiple timescales. To understand how such body-brain interactions emerge across timescales to control movement, we performed whole-cell patch recordings from visual neurons involved in course control in Drosophila. We show that the activity of leg mechanosensory cells, propagating via specific ascending neurons, is critical for stride-by-stride steering adjustments driven by the visual circuit, and, at longer timescales, it provides information about the moving body’s state to flexibly recruit the visual circuit for course control. Thus, our findings demonstrate the presence of an elegant stride-based mechanism operating at multiple timescales for context-dependent course control. We propose that this mechanism functions as a general basis for the adaptive control of locomotion.



中文翻译:

步行大步直接快速灵活地招募视觉电路以控制果蝇的路线

感觉系统活动和运动参数之间的灵活映射是运动控制的标志。这种灵活性取决于短期姿势动力学和动物长期目标的持续比较,因此需要可以跨多个时间尺度运行的神经机制。为了了解这种体脑相互作用如何跨越时间尺度来控制运动,我们对果蝇中参与过程控制的视觉神经元进行了全细胞贴片记录. 我们表明,腿部机械感觉细胞的活动,通过特定的上行神经元传播,对于由视觉电路驱动的逐步转向调整至关重要,并且在更长的时间尺度上,它提供了有关移动体状态的信息,以灵活地招募用于课程控制的视觉电路。因此,我们的研究结果表明,存在一种优雅的基于步幅的机制,可在多个时间尺度上运行,用于依赖于上下文的课程控制。我们建议这种机制作为运动自适应控制的一般基础。

更新日期:2022-05-06
down
wechat
bug