当前位置: X-MOL 学术Plant Biotech. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
GmTDN1 improves wheat yields by inducing dual tolerance to both drought and low-N stress
Plant Biotechnology Journal ( IF 13.8 ) Pub Date : 2022-05-05 , DOI: 10.1111/pbi.13836
Yongbin Zhou 1 , Jun Liu 1 , Jinkao Guo 2 , Yanxia Wang 2 , Hutai Ji 3 , Xiusheng Chu 4 , Kai Xiao 5 , Xueli Qi 6 , Lin Hu 6 , Hui Li 7 , Mengyun Hu 7 , Wensi Tang 1 , Jiji Yan 1 , Huishu Yan 1 , Xinxuan Bai 1 , Linhao Ge 1 , Mingjie Lyu 1 , Jun Chen 1 , Zhaoshi Xu 1 , Ming Chen 1 , Youzhi Ma 1
Affiliation  

Genetically enhancing drought tolerance and nutrient use efficacy enables sustainable and stable wheat production in drought-prone areas exposed to water shortages and low soil fertility, due to global warming and declining natural resources. In this study, wheat plants, exhibiting improved drought tolerance and N-use efficacy, were developed by introducing GmTDN1, a gene encoding a DREB-like transcription factor, into two modern winter wheat varieties, cv Shi4185 and Jimai22. Overexpressing GmTDN1 in wheat resulted in significantly improved drought and low-N tolerance under drought and N-deficient conditions in the greenhouse. Field trials conducted at three different locations over a period of 2–3 consecutive years showed that both Shi4185 and Jimai22 GmTDN1 transgenic lines were agronomically superior to wild-type plants, and produced significantly higher yields under both drought and N-deficient conditions. No yield penalties were observed in these transgenic lines under normal well irrigation conditions. Overexpressing GmTDN1 enhanced photosynthetic and osmotic adjustment capacity, antioxidant metabolism, and root mass of wheat plants, compared to those of wild-type plants, by orchestrating the expression of a set of drought stress-related genes as well as the nitrate transporter, NRT2.5. Furthermore, transgenic wheat with overexpressed NRT2.5 can improve drought tolerance and nitrogen (N) absorption, suggesting that improving N absorption in GmTDN1 transgenic wheat may contribute to drought tolerance. These findings may lead to the development of new methodologies with the capacity to simultaneously improve drought tolerance and N-use efficacy in cereal crops to ensure sustainable agriculture and global food security.

中文翻译:

GmTDN1通过诱导对干旱和低氮胁迫的双重耐受来提高小麦产量

由于全球变暖和自然资源的减少,通过遗传增强耐旱性和养分利用效率,可以在易受干旱影响且土壤肥力低的地区实现可持续和稳定的小麦生产。在这项研究中,通过将GmTDN1(一种编码 DREB 样转录因子的基因)引入两个现代冬小麦品种cv Shi4185 和 Jimai22中,培育出表现出改善的耐旱性和氮利用功效的小麦植物。在小麦中过表达GmTDN1 可显着改善干旱和温室中干旱和缺氮条件下的低氮耐受性。连续 2-3 年在三个不同地点进行的田间试验表明,Shi4185 和 Jimai22GmTDN1转基因株系在农艺学上优于野生型植物,并且在干旱和缺氮条件下产生显着更高的产量。在正常井灌溉条件下,在这些转基因品系中没有观察到产量损失。与野生型植物相比,过表达GmTDN1通过协调一组干旱胁迫相关基因以及硝酸盐转运蛋白NRT2 的表达,增强了小麦植物的光合和渗透调节能力、抗氧化代谢和根质量。 5 . 此外,过表达NRT2.5的转基因小麦可以提高耐旱性和氮 (N) 吸收,这表明提高GmTDN1中的氮吸收转基因小麦可能有助于耐旱。这些发现可能会导致开发能够同时提高谷类作物的耐旱性和氮素利用效率的新方法,以确保可持续农业和全球粮食安全。
更新日期:2022-05-05
down
wechat
bug