当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Digital Light Processing 3D-Printed Ceramic Metamaterials for Electromagnetic Wave Absorption
Nano-Micro Letters ( IF 26.6 ) Pub Date : 2022-05-05 , DOI: 10.1007/s40820-022-00865-x
Rui Zhou 1 , Yansong Wang 2 , Ziyu Liu 1 , Yongqiang Pang 3 , Jianxin Chen 1 , Jie Kong 1
Affiliation  

Abstract

Combining 3D printing with precursor-derived ceramic for fabricating electromagnetic (EM) wave-absorbing metamaterials has attracted great attention. This study presents a novel ultraviolet-curable polysiloxane precursor for digital light processing (DLP) 3D printing to fabricate ceramic parts with complex geometry, no cracks and linear shrinkage. Guiding with the principles of impedance matching, attenuation, and effective-medium theory, we design a cross-helix-array metamaterial model based on the complex permittivity constant of precursor-derived ceramics. The corresponding ceramic metamaterials can be successfully prepared by DLP printing and subsequent pyrolysis process, achieving a low reflection coefficient and a wide effective absorption bandwidth in the X-band even under high temperature. This is a general method that can be extended to other bands, which can be realized by merely adjusting the unit structure of metamaterials. This strategy provides a novel and effective avenue to achieve “target-design-fabricating” ceramic metamaterials, and it exposes the downstream applications of highly efficient and broad EM wave-absorbing materials and structures with great potential applications.



中文翻译:

用于电磁波吸收的数字光处理 3D 打印陶瓷超材料

摘要

将 3D 打印与前体衍生陶瓷相结合以制造电磁 (EM) 波吸收超材料引起了极大的关注。本研究提出了一种用于数字光处理 (DLP) 3D 打印的新型紫外线固化聚硅氧烷前体,可制造具有复杂几何形状、无裂纹和线性收缩的陶瓷部件。以阻抗匹配、衰减和有效介质理论为指导,我们设计了一种基于前体衍生陶瓷的复介电常数常数的交叉螺旋阵列超材料模型。相应的陶瓷超材料可以通过DLP打印和随后的热解工艺成功制备,即使在高温下也能在X波段实现低反射系数和宽有效吸收带宽。这是一种可以扩展到其他波段的通用方法,只需调整超材料的单元结构即可实现。该策略为实现“目标-设计-制造”陶瓷超材料提供了一条新颖有效的途径,并揭示了具有巨大应用潜力的高效、广泛的电磁波吸收材料和结构的下游应用。

更新日期:2022-05-09
down
wechat
bug