当前位置: X-MOL 学术Nano-Micro Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability
Nano-Micro Letters ( IF 26.6 ) Pub Date : 2022-05-03 , DOI: 10.1007/s40820-022-00860-2
Pan Wang 1, 2, 3 , Yuanzhi Luo 1 , Gaixia Zhang 2 , Zhangsen Chen 2 , Hariprasad Ranganathan 2 , Shuhui Sun 2 , Zhicong Shi 1
Affiliation  

Highlights

  • Three-dimensional (3D) core‐shell heterostructured NixSy@MnOxHy nanorods grown on nickel foam (NixSy@MnOxHy/NF) were successfully fabricated via a simple hydrothermal reaction and a subsequent electrodeposition process.

  • The fabricated NixSy@MnOxHy/NF shows outstanding bifunctional activity and stability for hydrogen evolution reaction and oxygen evolution reaction, as well as overall‐water‐splitting performance.

  • The main origins are the interface engineering of NixSy@MnOxHy, the shell‐protection characteristic of MnOxHy, and the 3D open nanorod structure, which remarkably endow the electrocatalyst with high activity and stability.

Abstract

Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional (3D) core‐shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam (NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn‐S bonds connect the heterostructure interfaces of NixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction (OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm–2, respectively, along with high stability of 150 h at 100 mA cm–2. Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm–2, accompanied by excellent stability at 100 mA cm–2 for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.



中文翻译:

NixSy@MnOxHy 纳米棒界面工程有效提高整体水分解活性和稳定性

强调

  • 通过简单的水热反应和随后的电沉积工艺成功制备了在泡沫镍 (Ni x S y @MnO x H y /NF) 上生长的三维 (3D) 核壳异质结构 Ni x S y @MnO x H y纳米棒.

  • 制备的 Ni x S y @MnO x H y /NF 显示出出色的双功能活性和析氢反应和析氧反应的稳定性,以及整体水分解性能。

  • 主要起源是Ni x S y @MnO x H y的界面工程、MnO x H y的壳层保护特性和3D开放纳米棒结构,显着赋予电催化剂高活性和稳定性。

抽象的

探索高活性和稳定的过渡金属基双功能电催化剂最近引起了广泛的研究兴趣,以实现高固有活性、丰富的暴露活性位点、快速传质和强结构稳定性以实现整体水分解。在此,应用界面工程与壳保护策略相结合,构建了在泡沫镍上生长的三维 (3D) 核壳 Ni x S y @MnO x H y异质结构纳米棒 (Ni x S y @MnO x H y / NF)作为双功能电催化剂。Ni x S y @MnO x H y/NF 是通过简单的水热反应,然后是电沉积工艺合成的。X射线吸收精细结构谱表明,丰富的Mn-S键连接Ni x S y @MnO x H y的异质结构界面,导致强烈的电子相互作用,提高了析氢反应和析氧反应的本征活性(开放教育资源)。此外,作为一种有效的保护壳,MnO x H y显着抑制了电催化剂在高电流密度下的电化学腐蚀,显着提高了高电位下的稳定性。此外,3D纳米棒结构不仅暴露了富集的活性位点,而且还加速了电解质扩散和气泡解吸。因此,Ni x S y @MnO x H y /NF 表现出优异的双功能活性和整体水分解稳定性,在 100 和 500 mA cm –2下 OER 的低过电位分别为 326 和 356 mV ,以及高稳定性100 mA cm –2时 150 小时。此外,对于整体水分解,它在 10 mA cm –2时呈现出 1.529 V 的低电池电压,伴随着在 100 mA cm –2下 100 小时的出色稳定性。这项工作为通过界面工程结合壳层保护策略探索高活性和稳定的双功能电催化剂提供了思路。

更新日期:2022-05-04
down
wechat
bug