当前位置: X-MOL 学术Int. J. Damage Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Damage mechanism characterization of ±35° and ±55° FW composite tubes using acoustic emission method
International Journal of Damage Mechanics ( IF 4.2 ) Pub Date : 2022-04-20 , DOI: 10.1177/10567895221095603
Sajad Alimirzaei 1, 2 , Mehdi Ahmadi Najafabadi 1 , Ali Nikbakht 2 , Lotfollah Pahlavan 3
Affiliation  

The focus of this study is to investigate the mechanical properties, of ±35° and ±55° filament wound (FW) composite tubes under axial compression loading using the acoustic emission technique. For this purpose, material failure, crashworthiness characteristics, and the effect of each mechanism on the energy absorption capacity were studied using numerical and experimental approaches. Also, to identify and estimate the contribution percentage of damage mechanisms as well as how the damage grows in the specimens, the analysis of acoustic emission signals recorded during loading was performed. Digital image correlation was additionally used to capture displacement/strain contour maps. Finally, to analyze the effect of the winding pattern in the experimental test, the tubes were simulated using finite element analysis (FEA). For modeling of damage mechanisms, a 3D continuum damage model was used. The results of signal processing showed that by increasing the weaving angle of fibers from ±35° to ±55°, the separation of fibers from the matrix decreases, and the percentage of matrix crushing and fiber failure increases. The assessment of damage percentages showed that the reason for the large drop in force at ±55° compared to ±35° is the increase in matrix crushing. Furthermore, the failure behavior of FW tubes appeared to be dominated by local buckling, and the FEA effectively predicted the linear behavior and maximum load value of the composite tubes.



中文翻译:

使用声发射法表征±35°和±55° FW复合管的损伤机制

本研究的重点是使用声发射技术研究 ±35° 和 ±55° 纤维缠绕 (FW) 复合管在轴向压缩载荷下的机械性能。为此,使用数值和实验方法研究了材料失效、耐撞特性以及每种机制对能量吸收能力的影响。此外,为了识别和估计损伤机制的贡献百分比以及损伤如何在试样中增长,对加载过程中记录的声发射信号进行了分析。数字图像相关性还用于捕获位移/应变等值线图。最后,为了分析缠绕模式在实验测试中的影响,使用有限元分析(FEA)对管子进行了模拟。对于损伤机制的建模,使用了 3D 连续损伤模型。信号处理结果表明,将纤维的编织角度从±35°增加到±55°,纤维与基体的分离减少,基体破碎和纤维失效的百分比增加。损伤百分比的评估表明,与±35°相比,±55°的力下降幅度较大的原因是基质破碎的增加。此外,FW 管的失效行为似乎以局部屈曲为主,FEA 有效地预测了复合管的线性行为和最大载荷值。基体破碎和纤维破坏的百分比增加。损伤百分比的评估表明,与±35°相比,±55°的力下降幅度较大的原因是基质破碎的增加。此外,FW 管的失效行为似乎以局部屈曲为主,FEA 有效地预测了复合管的线性行为和最大载荷值。基体破碎和纤维破坏的百分比增加。损伤百分比的评估表明,与±35°相比,±55°的力下降幅度较大的原因是基质破碎的增加。此外,FW 管的失效行为似乎以局部屈曲为主,FEA 有效地预测了复合管的线性行为和最大载荷值。

更新日期:2022-04-20
down
wechat
bug