当前位置: X-MOL 学术IEEE Open J. Antennas Propag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of Microfluidic Reflectarray Elements for Multi-Reconfiguration Using Liquid Metal
IEEE Open Journal of Antennas and Propagation Pub Date : 2022-04-11 , DOI: 10.1109/ojap.2022.3166232
Eduardo Carrasco , Juan Gomez-Cruz , Mario Serrano-Berrueco , Carlos E. Saavedra , Carlos Escobedo

Using an alloy of non-toxic liquid metal (Galinstan) is proposed to implement multi-reconfiguration in reflectarray elements. Reflectarray antennas are an interesting technology for dynamically controlling, simultaneously or individually, different properties of the antenna (beam shape and pointing direction, field polarization, and frequency of operation) according to the system’s demand. The use of liquid metal, which can potentially be used to re-shape the topology of the unit cell, along with advances in the micro-and nanofluidics field, provides more flexibility for efficiently implementing such multi-reconfiguration. A frequency-reconfigurable reflectarray element is based on the well-known aperture-coupled cell, and a phase-reconfigurable cell based on single-and multi-resonance dipoles is proposed at 28 GHz. One advantage of microfluidics is that the concept can easily be extended to much higher frequencies, where other devices start to be expensive, inefficient, or limited in terms of multi-reconfiguration. The microfluidic technology required to implement the dipole-based element is demonstrated using a microfluidic burst-valve chip. Additionally, a simplified RF proof-of-concept is presented using the well-known waveguide simulator technique from 15 GHz to 22 GHz (WR51). The results obtained constitute an important first step toward the implementation of multi-reconfigurable reflectarray antennas.

中文翻译:

使用液态金属进行多重重构的微流控反射阵列元件设计

建议使用无毒液态金属合金 (Galinstan) 在反射阵列元件中实现多重重构。反射阵列天线是一项有趣的技术,可根据系统需求同时或单独动态控制天线的不同属性(波束形状和指向方向、场极化和工作频率)。液态金属的使用可能用于重塑晶胞的拓扑结构,以及微流体和纳米流体领域的进步,为有效实施这种多重重构提供了更大的灵活性。频率可重构反射阵列元件基于众所周知的孔径耦合单元,并在 28 GHz 提出了基于单谐振和多谐振偶极子的相位可重构单元。微流体的一个优点是该概念可以很容易地扩展到更高的频率,而其他设备开始变得昂贵、低效或在多重重构方面受到限制。使用微流体爆破阀芯片演示了实现基于偶极子的元件所需的微流体技术。此外,还使用众所周知的 15 GHz 至 22 GHz (WR51) 波导仿真器技术展示了简化的 RF 概念验证。获得的结果构成了实现多重可重构反射阵列天线的重要第一步。使用微流体爆破阀芯片演示了实现基于偶极子的元件所需的微流体技术。此外,还使用众所周知的 15 GHz 至 22 GHz (WR51) 波导仿真器技术展示了简化的 RF 概念验证。获得的结果构成了实现多重可重构反射阵列天线的重要第一步。使用微流体爆破阀芯片演示了实现基于偶极子的元件所需的微流体技术。此外,还使用众所周知的 15 GHz 至 22 GHz (WR51) 波导仿真器技术展示了简化的 RF 概念验证。获得的结果构成了实现多重可重构反射阵列天线的重要第一步。
更新日期:2022-04-11
down
wechat
bug