当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A robust all-organic protective layer towards ultrahigh-rate and large-capacity Li metal anodes
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2022-04-25 , DOI: 10.1038/s41565-022-01107-2
Shimei Li 1 , Junlong Huang 1 , Yin Cui 1 , Shaohong Liu 1 , Zirun Chen 1 , Wen Huang 1 , Chuanfa Li 1 , Ruliang Liu 1 , Ruowen Fu 1 , Dingcai Wu 1
Affiliation  

The low cycling efficiency and uncontrolled dendrite growth resulting from an unstable and heterogeneous lithium–electrolyte interface have largely hindered the practical application of lithium metal batteries. In this study, a robust all-organic interfacial protective layer has been developed to achieve a highly efficient and dendrite-free lithium metal anode by the rational integration of porous polymer-based molecular brushes (poly(oligo(ethylene glycol) methyl ether methacrylate)-grafted, hypercrosslinked poly(4‐chloromethylstyrene) nanospheres, denoted as xPCMS-g-PEGMA) with single-ion-conductive lithiated Nafion. The porous xPCMS inner cores with rigid hypercrosslinked skeletons substantially increase mechanical robustness and provide adequate channels for rapid ionic conduction, while the flexible PEGMA and lithiated Nafion polymers enable the formation of a structurally stable artificial protective layer with uniform Li+ diffusion and high Li+ transference number. With such artificial solid electrolyte interphases, ultralong-term stable cycling at an ultrahigh current density of 10 mA cm−2 for over 9,100 h (>1 year) and unprecedented reversible lithium plating/stripping (over 2,800 h) at a large areal capacity (10 mAh cm−2) have been achieved for lithium metal anodes. Moreover, the protected anodes also show excellent cell stability when paired with high-loading cathodes (~4 mAh cm−2), demonstrating great prospects for the practical application of lithium metal batteries.



中文翻译:

为超高倍率和大容量锂金属负极提供坚固的全有机保护层

不稳定和不均匀的锂-电解质界面导致的低循环效率和不受控制的枝晶生长在很大程度上阻碍了锂金属电池的实际应用。在这项研究中,通过合理整合基于多孔聚合物的分子刷(聚(低聚(乙二醇)甲基醚甲基丙烯酸酯)),开发了一种坚固的全有机界面保护层,以实现高效且无枝晶的锂金属负极。接枝的超交联聚(4-氯甲基苯乙烯)纳米球,表示为x PCMS - g -PEGMA)与单离子导电锂化 Nafion。多孔x具有刚性超交联骨架的 PCMS 内核显着提高了机械强度,并为快速离子传导提供了足够的通道,而柔性 PEGMA 和锂化 Nafion 聚合物能够形成结构稳定的人工保护层,具有均匀的 Li +扩散和高 Li +迁移数。借助这种人造固体电解质界面,可在 10 mA cm -2的超高电流密度下实现超过 9,100 小时(>1 年)的超长期稳定循环,并在大面积容量下实现前所未有的可逆锂电镀/剥离(超过 2,800 小时)( 10毫安厘米-2) 已用于锂金属阳极。此外,受保护的负极在与高负载正极(~4 mAh cm -2)配对时也表现出优异的电池稳定性,为锂金属电池的实际应用展示了巨大的前景。

更新日期:2022-04-26
down
wechat
bug