当前位置: X-MOL 学术Crop Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Prediction of regrowth and biomass of perennial sorghum using unoccupied aerial systems
Crop Science ( IF 2.3 ) Pub Date : 2022-04-22 , DOI: 10.1002/csc2.20758
Shakirah Nakasagga 1 , Alper Adak 1 , Seth C. Murray 1 , William L. Rooney 1 , Leo Hoffmann, 1 , Scott Wilde 1 , Regan Lindsey 1 , Pheonah Nabukalu 2 , Stan Cox 2
Affiliation  

Perennial grain sorghum [Sorghum bicolor (L.) Moench] has potential to produce grain and forage while improving soil health, ecosystem services, and carbon soil sequestration but requires further genetic improvement. Unoccupied aerial systems (UAS, also known as drones and unmanned aerial systems) provide opportunities to quickly evaluate plant traits on a large scale with precision. Unoccupied aerial system flights were used to evaluate biomass yield and rhizome characteristics of 100 diverse sorghum hybrids, most being from an interspecific hybridization program, in the establishment year and first year of regrowth. Twenty-one vegetation indices (VIs) with canopy height measurements (CHMs) were processed from seven UAS flights made temporally during each growing season. Regression of the temporal data (VI and CHM) and phenotypic traits, including rhizome characteristics based on plant stand count (PSC), rhizome-derived shoots (RDS), and fresh and dry biomass yields, showed useful predictions when combining temporal VI with CHM and machine learning. Blue chromatic coordinate index (BCC) best predicted all measured traits. If predictions could be generalized, UAS would reduce field evaluation time for perennial sorghum or breeding perennial grasses in general and allow breeders to evaluate additional genotypes. In this study, we found that optimizing flights to specific dates after planting could minimize resource requirements and costs in prediction of regrowth and biomass yield of perennial sorghum.

中文翻译:

使用未占用的空中系统预测多年生高粱的再生和生物量

多年生谷物高粱 [ Sorghum bicolor(L.) Moench] 有可能在改善土壤健康、生态系统服务和碳土壤固存的同时生产谷物和饲料,但需要进一步的遗传改良。无人驾驶航空系统(UAS,也称为无人机和无人驾驶航空系统)提供了大规模、精确地快速评估植物性状的机会。未占用的空中系统飞行被用来评估 100 种不同的高粱杂交种的生物量产量和根茎特征,大多数来自种间杂交计划,在建立年和再生的第一年。21 个植被指数 (VI) 和冠层高度测量 (CHM) 从每个生长季节期间临时进行的 7 次 UAS 飞行中处理。时间数据(VI 和 CHM)和表型特征的回归,包括基于植物林分计数 (PSC)、根茎衍生枝条 (RDS) 以及新鲜和干燥生物量产量的根茎特征,在将时间 VI 与 CHM 和机器学习相结合时显示出有用的预测。蓝色色坐标指数 (BCC) 最能预测所有测量的性状。如果可以推广预测,UAS 将减少多年生高粱或一般育种多年生草的田间评估时间,并允许育种者评估其他基因型。在这项研究中,我们发现在种植后优化到特定日期的飞行可以最大限度地减少预测多年生高粱再生和生物量产量的资源需求和成本。蓝色色坐标指数 (BCC) 最能预测所有测量的性状。如果可以推广预测,UAS 将减少多年生高粱或一般育种多年生草的田间评估时间,并允许育种者评估其他基因型。在这项研究中,我们发现在种植后优化到特定日期的飞行可以最大限度地减少预测多年生高粱再生和生物量产量的资源需求和成本。蓝色色坐标指数 (BCC) 最能预测所有测量的性状。如果可以推广预测,UAS 将减少多年生高粱或一般育种多年生草的田间评估时间,并允许育种者评估其他基因型。在这项研究中,我们发现在种植后优化到特定日期的飞行可以最大限度地减少预测多年生高粱再生和生物量产量的资源需求和成本。
更新日期:2022-04-22
down
wechat
bug