当前位置: X-MOL 学术Rev. Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Interfacial thermal resistance: Past, present, and future
Reviews of Modern Physics ( IF 44.1 ) Pub Date : 2022-04-22 , DOI: 10.1103/revmodphys.94.025002
Jie Chen , Xiangfan Xu , Jun Zhou , Baowen Li

Interfacial thermal resistance (ITR) is the main obstacle for heat flows from one material to another. Understanding ITR becomes essential for the removal of redundant heat from fast and powerful electronic and photonic devices, batteries, etc. In this review, a comprehensive examination of ITR is conducted. Particular focus is placed on the theoretical, computational, and experimental developments in the 30 years after the last review given by Swartz and Pohl in 1989. To be self-consistent, the fundamental theories, such as the acoustic mismatch model, the diffuse mismatch model, and the two-temperature model, are reviewed. The most popular computational methods, including lattice dynamics, molecular dynamics, the Green’s function method, and the Boltzmann transport equation method, are discussed in detail. Various experimental tools in probing ITR, such as the time-domain thermoreflectance, the thermal bridge method, the 3ω method, and the electron-beam self-heating method, are illustrated. This review covers ITR (also known as the thermal boundary resistance or Kapitza resistance) of solid-solid, solid-liquid, and solid-gas interfaces. Such fundamental challenges as how to define the interface, temperature, etc. when the materials scale down to the nanoscale or atomic scale and the opportunities for future studies are also pointed out.

中文翻译:

界面热阻:过去、现在和未来

界面热阻 (ITR) 是热量从一种材料流向另一种材料的主要障碍。了解 ITR 对于从快速和强大的电子和光子设备、电池等中去除多余热量至关重要。在本次审查中,对 ITR 进行了全面检查。在 Swartz 和 Pohl 于 1989 年进行最后一次审查之后的 30 年中,特别关注理论、计算和实验的发展。为了自洽,基本理论,如声学失配模型、扩散失配模型, 和两温度模型, 进行了审查。详细讨论了最流行的计算方法,包括晶格动力学、分子动力学、格林函数法和玻尔兹曼输运方程法。3ω说明了方法和电子束自加热方法。本综述涵盖了固-固、固-液和固-气界面的 ITR(也称为热边界电阻或 Kapitza 电阻)。还指出了当材料缩小到纳米级或原子级时如何定义界面、温度等基本挑战以及未来研究的机会。
更新日期:2022-04-24
down
wechat
bug