当前位置: X-MOL 学术Coord. Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine
Coordination Chemistry Reviews ( IF 20.6 ) Pub Date : 2022-04-23 , DOI: 10.1016/j.ccr.2022.214540
Hong-Ying Xia , Bo-Yi Li , Yi Zhao , Ya-Hui Han , Shi-Bin Wang , Ai-Zheng Chen , Ranjith Kumar Kankala

The transition elements (groups IIIB to IIB)-based materials present advantageous morphological and physicochemical attributes due to the exceptionally variable valence states and highly stable metal ions. Among the first-row transition elements-based materials, manganese dioxide (MnO2) has garnered enormous interest from researchers due to the ease of fabricating diverse nanostructures in multiple dimensions (0-3D) with unique physicochemical, morphological, and optoelectronic characteristics. In addition to their excellent carrying ability as vectors, MnO2-based nanoarchitectures present several features of participating in the intracellular biochemical reactions and altering the internal tumor microenvironment. To preserve these exceptional features and improve biocompatibility, several MnO2-based architectures and nanocomposites have been fabricated. In this article, we provide a comprehensive view of various MnO2-based nanoplatforms in different forms, such as 0D (nanodots), 1D (nanowires and nanotubes), 2D (nanosheets), and 3D (nanoparticles and hollow spheres), as well as various innovative constructs (Janus-type and flower-shaped architectures). Initially, we provide insights on different engineering strategies, highlighting the pros and cons focusing on the reaction conditions. Further, we give a detailed exploration of these nanostructures and the offered properties that play crucial roles in their applicability. Then, we provide an emphasis on their applicability in diverse biomedical applications, such as conventional (drugs/photosensitizers/proteins/genes) and innovative therapeutic (chemodynamic, photodynamic, sonodynamic, and photothermal) modalities, bioimaging, biosensing, biocatalysis, cell capture/enrichment, as well as tissue regeneration. Finally, we summarize with interesting perspectives in addressing the challenges of translating these innovative platforms to clinics.



中文翻译:

用于生物医学的纳米结构二氧化锰 (MnO2) 组件

由于异常多变的价态和高度稳定的金属离子,基于过渡元素(IIIB 至 IIB 族)的材料呈现出有利的形态和物理化学属性。在第一行基于过渡元素的材料中,二氧化锰(MnO 2)由于易于制造具有独特物理化学、形态和光电特性的多维(0-3D)多种纳米结构而引起了研究人员的极大兴趣。MnO 2除了作为载体具有出色的承载能力外,基于纳米结构的纳米结构呈现出参与细胞内生化反应和改变内部肿瘤微环境的几个特征。为了保留这些特殊特性并提高生物相容性,已经制造了几种基于MnO 2的结构和纳米复合材料。在本文中,我们全面介绍了各种 MnO 2基于不同形式的纳米平台,例如 0D(纳米点)、1D(纳米线和纳米管)、2D(纳米片)和 3D(纳米颗粒和空心球),以及各种创新结构(Janus 型和花形结构) )。最初,我们提供了对不同工程策略的见解,强调了关注反应条件的优缺点。此外,我们详细探索了这些纳米结构以及在其适用性中起关键作用的所提供的特性。然后,我们强调它们在各种生物医学应用中的适用性,例如传统(药物/光敏剂/蛋白质/基因)和创新治疗(化学动力学、光动力学、声动力学和光热)模式、生物成像、生物传感、生物催化、细胞捕获/富集,以及组织再生。

更新日期:2022-04-23
down
wechat
bug