当前位置: X-MOL 学术Adv. Water Resour. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modelling saline intrusion using dynamic mesh optimization with parallel processing
Advances in Water Resources ( IF 4.7 ) Pub Date : 2022-04-20 , DOI: 10.1016/j.advwatres.2022.104189
A. Hamzehloo , M.L. Bahlali , P. Salinas , C. Jacquemyn , C.C. Pain , A.P. Butler , M.D. Jackson

Saline intrusion (SI) in coastal aquifers is a global problem with the potential to contaminate groundwater used by over a billion people. Numerical modelling of SI in coastal aquifers is a key tool for risk assessment, aquifer management and resource regulation, but is extremely challenging because the mixing zone across the saline front is often very narrow, extending over metres or 10’s metres, yet the saline front itself may extend laterally over a large (i.e. many km) three-dimensional (3D) domain. Moreover, the aquifer may be highly heterogeneous, further complicating the movement and geometry of the front. We test here the use of dynamic mesh optimization (DMO) in a parallel computational framework to simulate SI with higher accuracy and lower computational cost compared to fixed-mesh approaches. The framework uses a double control-volume-finite-element (DCVFE) method and is implemented in the open-source Imperial College Finite Element Reservoir SimulaTor (IC-FERST), but could be implemented in other FE-based simulators. We confirm accuracy and convergence using test cases based on the classic ’Henry’ SI problem, demonstrating that solutions obtained using DMO require significantly fewer elements and therefore have much lower computational cost compared to equivalent fixed mesh solutions. We apply the framework to a realistic 3D case study simulating saline intrusion in a heterogeneous chalk aquifer, demonstrating simulation speed-up in excess of 120×. We suggest that parallelized DMO offers significant advantages over existing methods to simulate SI.



中文翻译:

使用具有并行处理的动态网格优化模拟盐水入侵

沿海含水层的盐水入侵 (SI) 是一个全球性问题,有可能污染超过 10 亿人使用的地下水。沿海含水层 SI 的数值模拟是风险评估、含水层管理和资源调节的关键工具,但极具挑战性,因为盐碱前沿的混合区通常非常狭窄,延伸超过几米或 10 米,而盐碱前沿本身可以在一个大的(即许多公里)三维(3D)域上横向延伸。此外,含水层可能高度异质,使锋面的运动和几何形状进一步复杂化。我们在这里测试了在并行计算框架中使用动态网格优化 (DMO) 来模拟 SI,与固定网格方法相比,它具有更高的精度和更低的计算成本。该框架使用双控制体积有限元 (DCVFE) 方法,并在开源帝国理工学院有限元水库模拟器 (IC-FERST) 中实现,但也可以在其他基于有限元的模拟器中实现。我们使用基于经典 'Henry' SI 问题的测试用例确认准确性和收敛性,证明使用 DMO 获得的解决方案需要的元素少得多,因此与等效的固定网格解决方案相比,计算成本要低得多。我们将该框架应用于模拟非均质白垩含水层中盐水侵入的真实 3D 案例研究,证明模拟加速超过 120 我们使用基于经典 'Henry' SI 问题的测试用例确认准确性和收敛性,证明使用 DMO 获得的解决方案需要的元素少得多,因此与等效的固定网格解决方案相比,计算成本要低得多。我们将该框架应用于模拟非均质白垩含水层中盐水侵入的真实 3D 案例研究,证明模拟加速超过 120 我们使用基于经典 'Henry' SI 问题的测试用例确认准确性和收敛性,证明使用 DMO 获得的解决方案需要的元素少得多,因此与等效的固定网格解决方案相比,计算成本要低得多。我们将该框架应用于模拟非均质白垩含水层中盐水侵入的真实 3D 案例研究,证明模拟加速超过 120×. 我们建议并行化 DMO 比现有的模拟 SI 方法具有显着优势。

更新日期:2022-04-20
down
wechat
bug