当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems
Accounts of Chemical Research ( IF 18.3 ) Pub Date : 2022-04-08 , DOI: 10.1021/acs.accounts.2c00038
Jingjing Guo 1 , Chaolong Yang 1, 2 , Yanli Zhao 1
Affiliation  

Long-lived organic room-temperature phosphorescence (RTP) materials have recently drawn extensive attention because of their promising applications in information security, biological imaging, optoelectronic devices, and intelligent sensors. In contrast to conventional fluorescence, the RTP phenomenon originates from the slow radiative transition of triplet excitons. Thus, enhancing the intersystem crossing (ISC) rate from the lowest excited singlet state (S1) to the excited triplet state and suppressing the nonradiative relaxation channels of the lowest excited triplet state (T1) are reasonable methods for realizing highly efficient RTP in purely organic materials. Over the past few decades, many strategies have been designed on the basis of the above two crucial factors. The introduction of heavy atoms, aromatic carbonyl groups, and other heteroatoms with abundant lone-pair electrons has been demonstrated to strengthen the spin–orbit coupling, thereby successfully facilitating the ISC process. Furthermore, the rigid environment is commonly constructed through crystal engineering to restrict intramolecular motions and intermolecular collisions to decrease excited-state energy dissipation. However, most crystal-based organic RTP materials suffer from poor processability, flexibility, and reproducibility, becoming a thorny obstacle to their practical application.

中文翻译:

来自无定形聚合物系统的长寿命有机室温磷光

长寿命有机室温磷光(RTP)材料因其在信息安全、生物成像、光电器件和智能传感器等领域的广阔应用前景而受到广泛关注。与传统荧光相比,RTP 现象源于三重态激子的缓慢辐射跃迁。因此,提高了从最低激发单重态(S 1)到激发三重态的系统间穿越(ISC)率,并抑制了最低激发三重态(T 1 )的非辐射弛豫通道) 是在纯有机材料中实现高效 RTP 的合理方法。在过去的几十年里,许多战略都是基于上述两个关键因素设计的。已证明引入重原子、芳族羰基和其他具有丰富孤对电子的杂原子可以增强自旋轨道耦合,从而成功地促进 ISC 过程。此外,刚性环境通常通过晶体工程构建,以限制分子内运动和分子间碰撞,以减少激发态能量耗散。然而,大多数基于晶体的有机RTP材料加工性、柔韧性和再现性较差,成为其实际应用的棘手障碍。
更新日期:2022-04-08
down
wechat
bug