当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Galvanically replaced artificial interfacial layer for highly reversible zinc metal anodes
Applied Physics Reviews ( IF 15.0 ) Pub Date : 2022-01-03 , DOI: 10.1063/5.0074327
Peixun Xiong 1 , Yingbo Kang 1 , Haocheng Yuan 1 , Qing Liu 1 , Sang Ha Baek 1 , Jae Min Park 1 , Qingyun Dou 1 , Xiaotong Han 1 , Woo-Sung Jang 2 , Seok Joon Kwon 1 , Young-Min Kim 2 , Wenwu Li 1 , Ho Seok Park 1, 3
Affiliation  

Interface modification is considered as a straightforward strategy to regulate the electrochemical environment of metal anodes and to provide a physically protective interphase. Herein, we develop galvanically replaced artificial interfacial layers, where Sn, Sb, and Bi layers are uniformly grown on Zn anodes, for use in high-performance aqueous rechargeable zinc batteries. The corrosion and dendrite formation of Zn metal are inhibited by manipulating the uniform Zn deposition behavior and facile plating/stripping, as verified by electrochemical characterizations and postmortem, in situ optical, and computational analyses. Considering that the thickness, morphology, and crystallinity of the interfacial layers vary depending on their chemical identity, the Sn modified Zn anode (Zn|Sn) exhibits the optimum electrochemical performance owing to its highest Zn affinity and hierarchical structure. Consequently, symmetric cells with Zn|Sn anodes demonstrate stable plating/stripping over 2200 h at 1 mA cm−2 and a long cycle life of 2000 h at a high current density of 4 mA cm−2. In particular, the full cells by pairing Zn|Sn with β-MnO2 deliver a high capacity of 92.8 mA h g−1 even at a high current rate of 5000 mA g−1, 73% capacity retention after 1000 cycles at 1000 mA g−1, and improved cycle stability under low N/P ratio (<50) and high cathode mass loading (∼15.8 mg cm−2).

中文翻译:

用于高可逆锌金属阳极的电替代人工界面层

界面改性被认为是调节金属阳极电化学环境和提供物理保护界面的直接策略。在此,我们开发了电替代人工界面层,其中 Sn、Sb 和 Bi 层均匀地生长在 Zn 阳极上,用于高性能水系可充电锌电池。原位电化学表征和验尸证实,通过控制均匀的 Zn 沉积行为和易于电镀/剥离,抑制了 Zn 金属的腐蚀和枝晶形成光学和计算分析。考虑到界面层的厚度、形态和结晶度取决于它们的化学特性,Sn 修饰的 Zn 负极 (Zn|Sn) 由于其最高的 Zn 亲和力和分层结构而表现出最佳的电化学性能。因此,具有 Zn|Sn 阳极的对称电池在 1 mA cm -2下表现出超过 2200 小时的稳定电镀/剥离,在 4 mA cm -2的高电流密度下表现出 2000 小时的长循环寿命。特别是,通过将 Zn|Sn 与 β-MnO 2配对的全电池即使在 5000 mA g -1的高电流速率下也能提供 92.8 mA hg -1的高容量,在 1000 mA g -1 下循环 1000 次后容量保持率为 73% -1,并在低N/P比(<50)和高阴极质量负载(~15.8 mg cm -2)下提高循环稳定性。
更新日期:2022-01-03
down
wechat
bug