当前位置: X-MOL 学术Appl. Phys. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Phase-transition-induced giant Thomson effect for thermoelectric cooling
Applied Physics Reviews ( IF 15.0 ) Pub Date : 2022-02-01 , DOI: 10.1063/5.0077497
Rajkumar Modak 1 , Masayuki Murata 2 , Dazhi Hou 3 , Asuka Miura 1 , Ryo Iguchi 1 , Bin Xu 4 , Rulei Guo 4 , Junichiro Shiomi 4 , Yuya Sakuraba 1, 5 , Ken-ichi Uchida 1, 4, 6, 7
Affiliation  

The Seebeck and Peltier effects have been widely studied and used in various thermoelectric technologies, including thermal energy harvesting and solid-state heat pumps. However, basic and applied studies on the Thomson effect, another fundamental thermoelectric effect in conductors, are limited despite the fact that the Thomson effect allows electronic cooling through the application of a temperature gradient bias rather than the construction of junction structures. In this article, we report the observation of a giant Thomson effect that appears owing to magnetic phase transitions. The Thomson coefficient of FeRh-based alloys reaches large values approaching –1000 μV K−1 around room temperature because of the steep temperature dependence of the Seebeck coefficient associated with the antiferromagnetic–ferromagnetic phase transition. The Thomson coefficient is several orders of magnitude larger than the Seebeck coefficient of the alloys. Using the active thermography technique, we demonstrate that the Thomson cooling can be much larger than Joule heating in the same material even in a nearly steady state. The operation temperature of the giant Thomson effect in the FeRh-based alloys can be tuned over a wide range by applying an external magnetic field or by slightly changing the composition. Our findings provide a new direction in the materials science of thermoelectrics and pave the way for thermal management applications using the Thomson effect.

中文翻译:

用于热电冷却的相变引起的巨型汤姆逊效应

塞贝克和珀尔帖效应已被广泛研究并用于各种热电技术,包括热能收集和固态热泵。然而,尽管汤姆逊效应允许通过应用温度梯度偏置而不是结结构的构造来实现电子冷却,但对汤姆逊效应(导体中的另一种基本热电效应)的基础和应用研究仍然受到限制。在本文中,我们报告了由于磁相变而出现的巨大汤姆逊效应的观察结果。FeRh 基合金的汤姆逊系数达到接近 –1000  μ V K -1的较大值由于与反铁磁 - 铁磁相变相关的塞贝克系数的陡峭温度依赖性,因此在室温附近。汤姆逊系数比合金的塞贝克系数大几个数量级。使用主动热成像技术,我们证明汤姆森冷却可以比相同材料中的焦耳加热大得多,即使在几乎稳定的状态下也是如此。通过施加外部磁场或稍微改变成分,可以在很宽的范围内调节 FeRh 基合金中巨型汤姆逊效应的工作温度。我们的研究结果为热电材料科学提供了一个新方向,并为使用汤姆逊效应的热管理应用铺平了道路。
更新日期:2022-02-01
down
wechat
bug