当前位置: X-MOL 学术Nano Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Robust artificial interlayer for columnar sodium metal anode
Nano Energy ( IF 17.6 ) Pub Date : 2022-03-29 , DOI: 10.1016/j.nanoen.2022.107203
Zheng Luo 1 , Shusheng Tao 1 , Ye Tian 1 , Laiqiang Xu 1 , Ying Wang 2 , Xiaoyu Cao 3 , Yaping Wang 4 , Wentao Deng 1 , Guoqiang Zou 1 , Huan Liu 5 , Hongshuai Hou 1 , Ji Xiaobo 1
Affiliation  

Metallic Na with high specific capacity is considered as one of the most desirable alternatives for both stationary and portable electrical energy storage. However, uncontrollable dendrite generated from sluggish electrochemical kinetics and chemical instability of the solid-electrolyte interphase (SEI) layer seriously hampers the practical application of Na metal anode. Herein, interface-rich artificial interlayer composed of NaBr/Na3P nano-crystallines (NaBrP) is constructed on Na metal surface to manipulate the Na diffusion behaviors. As assisted theoretically, Na3P phase with rich ionic conductive channels greatly eliminates the diffusion barriers for Na+ permeation, while NaBr phase with low surface diffusion barrier and large band gap ensures fast spread of Na+ along the interface with promoted ionic distribution and interfacial stability. Furthermore, undesirable Na dendrites and electrolyte decomposition are significantly suppressed from the interlayer with high mechanical and chemical stability. In virtue of this robust interlayer, columnar and uniform Na is herein plated beneath NaBrP-protected electrode with a dendrite-free morphology, which achieves a prolonged lifespan of symmetrical cells over 700 h with minor polarization fluctuation and promotes the Na3V2(PO4)3 based full cells with a long-term stability of 500 cycles at 5 C as well as a high rates capacity of 38.4 mAh g−1 at 30 C (13.5 mA cm−2). This work systemically discovers the internal mechanism of Na+ transport within the SEI component, and provides an efficient strategy to realize high-performance sodium metal anode.



中文翻译:

用于柱状钠金属阳极的坚固人工中间层

具有高比容量的金属钠被认为是固定式和便携式电能存储最理想的替代品之一。然而,由于电化学动力学缓慢和固体电解质界面(SEI)层的化学不稳定性而产生的不可控制的枝晶严重阻碍了钠金属负极的实际应用。在此,在Na金属表面上构建了由NaBr/Na 3 P纳米晶体(NaBrP)组成的富界面人工中间层,以控制Na扩散行为。在理论上的辅助下,具有丰富离子导电通道的 Na 3 P 相极大地消除了 Na +的扩散势垒。渗透,而具有低表面扩散势垒和大带隙的 NaBr 相确保 Na +沿界面快速扩散,促进离子分布和界面稳定性。此外,具有高机械和化学稳定性的中间层显着抑制了不希望的钠枝晶和电解质分解。凭借这种坚固的中间层,柱状且均匀的 Na 被镀在具有无枝晶形态的 NaBrP 保护电极下方,从而实现对称电池的延长寿命超过 700 小时,且极化波动较小,并促进 Na 3 V 2 (PO 4 ) 3基于全电池的电池在 5 C 下具有 500 次循环的长期稳定性,在 30 C 下具有 38.4 mAh g -1的高倍率容量(13.5 mA cm -2)。该工作系统地揭示了SEI组件内Na +传输的内部机制,并为实现高性能钠金属负极提供了有效的策略。

更新日期:2022-03-29
down
wechat
bug