当前位置: X-MOL 学术Acc. Mater. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Li–Garnet Solid-State Batteries with LLZO Scaffolds
Accounts of Materials Research ( IF 14.6 ) Pub Date : 2022-03-29 , DOI: 10.1021/accountsmr.2c00004
Kostiantyn V. Kravchyk 1, 2 , Huanyu Zhang 1, 2 , Faruk Okur 1, 2 , Maksym V. Kovalenko 1, 2
Affiliation  

Figure 1. Schematics of the charging process of Li–garnet solid-state batteries based on porous LLZO membranes. Figure 2. Calculated gravimetric (a, b, d, e) and volumetric (c, f) energy densities of Li–garnet SSBs based on porous (a, b, c) and dense/porous (d, e, f) LLZO membranes vs the thickness and porosity of the porous LLZO layer. The batteries are composed of NMC (70 vol %)/SSE (30 vol %) cathodes, where SSE is based on LLZO or LPS. Figure 3. Illustration of Li plating/stripping at the Li/LLZO interface for porous and dense LLZO SSE. Figure 4. Calculated current density applied at the Li/LLZO contact area upon plating/stripping of Li in the porous (50% porosity) LLZO SSE vs its pore size and penetration depth of electroplated Li. The current density is shown in 2D (top) and 3D (bottom) formats at different scales: 2 mA cm–2 (a) and 0.1 mA cm–2 (b). The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/accountsmr.2c00004. Parameters for energy density calculations, charging process schematics, calculated gravimetric and volumetric energy densities, calculated current densities vs pore sizes (PDF) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html. Kostiantyn V. Kravchyk obtained his Ph.D. degree from Vernadsky Institute of General and Inorganic Chemistry of the Ukrainian National Academy of Sciences in 2009. Then, he completed postdoctoral research at the University of Le Mans (France), the University of Nantes (France), and ETH Zurich and Empa (Swiss Federal Laboratories for Materials Science and Technology). He now works as a senior scientist at ETH Zurich and Empa in the Functional Inorganic Materials group of Prof. Maksym Kovalenko. His research interests include all-solid-state Li-ion batteries, novel concepts for electrochemical energy storage, and novel materials for Li-ion and post-Li-ion batteries. Huanyu Zhang obtained his Bachelor of Science in Chemistry from Wuhan University in 2018 and his Master’s in Chemical Engineering and Biotechnology from École Polytechnique Fédérale de Lausanne (EPFL) in 2020. He is currently pursuing his Ph.D. at ETH Zurich under the supervision of Prof. Maksym Kovalenko. Faruk Okur obtained his Bachelor’s degree from Anadolu University in 2014 and his Master’s degree from Bilkent University in 2016. He is currently pursuing his Ph.D. under the supervision of Prof. Maksym Kovalenko at ETH Zurich. Maksym V. Kovalenko, born in 1982, studied chemistry at Chernivtsi National University (Ukraine) and then continued his studies at the Johannes Kepler University Linz (Austria), earning his Ph.D. degree in 2007 with professor Dr. Wolfgang Heiss. Subsequently, he joined the University of Chicago for postdoctoral training with Prof. Dmitri Talapin (research topic: inorganic ligand capping of colloidal nanocrystals). He joined ETH Zurich in summer 2011 as an assistant professor at the Laboratory of Inorganic Chemistry. Since August 2020, he has been a full professor. His group is also affiliated with Empa (Swiss Federal Laboratories for Materials Science and Technology). The research activities of Maksym Kovalenko and his group focus on chemistry, physics, and applications of inorganic solid-state materials and nanostructures. This research is part of the activities of the joint Empa-Fraunhofer ICS project “IE4B”, which is financially supported under the ICON funding scheme. This article references 33 other publications. This article has not yet been cited by other publications. Figure 1. Schematics of the charging process of Li–garnet solid-state batteries based on porous LLZO membranes. Figure 2. Calculated gravimetric (a, b, d, e) and volumetric (c, f) energy densities of Li–garnet SSBs based on porous (a, b, c) and dense/porous (d, e, f) LLZO membranes vs the thickness and porosity of the porous LLZO layer. The batteries are composed of NMC (70 vol %)/SSE (30 vol %) cathodes, where SSE is based on LLZO or LPS. Figure 3. Illustration of Li plating/stripping at the Li/LLZO interface for porous and dense LLZO SSE. Figure 4. Calculated current density applied at the Li/LLZO contact area upon plating/stripping of Li in the porous (50% porosity) LLZO SSE vs its pore size and penetration depth of electroplated Li. The current density is shown in 2D (top) and 3D (bottom) formats at different scales: 2 mA cm–2 (a) and 0.1 mA cm–2 (b). This article references 33 other publications. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/accountsmr.2c00004. Parameters for energy density calculations, charging process schematics, calculated gravimetric and volumetric energy densities, calculated current densities vs pore sizes (PDF) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

中文翻译:

带有 LLZO 支架的锂石榴石固态电池

图 1. 基于多孔 LLZO 膜的锂石榴石固态电池充电过程示意图。图 2. 基于多孔 (a, b, c) 和致密/多孔 (d, e, f) LLZO 计算的锂石榴石 SSB 的重量 (a, b, d, e) 和体积 (c, f) 能量密度膜与多孔 LLZO 层的厚度和孔隙率的关系。电池由 NMC (70 vol%)/SSE (30 vol%) 阴极组成,其中 SSE 基于 LLZO 或 LPS。图 3. 多孔致密 LLZO SSE 在 Li/LLZO 界面处的锂电镀/剥离示意图。图 4. 在多孔(50% 孔隙率)LLZO SSE 中电镀/剥离 Li 时,Li/LLZO 接触区域的计算电流密度与电镀 Li 的孔径和渗透深度的关系。电流密度以不同比例的 2D(顶部)和 3D(底部)格式显示:2 mA cm–2 (a) 和 0.1 mA cm –2 (b)。支持信息可在 https://pubs.acs.org/doi/10.1021/accountsmr.2c00004 免费获得。能量密度计算参数、充电过程示意图、计算的重量和体积能量密度、计算的电流密度与孔径 (PDF) 大多数电子支持信息文件无需订阅 ACS 网络版即可获得。此类文件可以按文章下载以供研究使用(如果有与相关文章链接的公共使用许可,则该许可可能允许其他用途)。可通过 RightsLink 许可系统请求从 ACS 获得其他用途的许可:http://pubs.acs.org/page/copyright/permissions.html。Kostiantyn V. Kravchyk获得博士学位。2009年在乌克兰国家科学院Vernadsky普通与无机化学研究所获得博士学位。随后在法国勒芒大学、法国南特大学、瑞士苏黎世联邦理工学院和恩帕大学完成博士后研究联邦材料科学与技术实验室)。他现在是苏黎世联邦理工学院和 Empa 的高级科学家,在 Maksym Kovalenko 教授的功能无机材料组工作。他的研究兴趣包括全固态锂离子电池、电化学储能的新概念以及锂离子和后锂离子电池的新材料。张焕宇2018年获得武汉大学化学学士学位,2020年获得洛桑联邦理工学院化学工程与生物技术硕士学位。目前正在攻读博士学位。在 Maksym Kovalenko 教授的监督下,在苏黎世联邦理工学院。Faruk Okur于 2014 年获得阿纳多卢大学的学士学位,并于 2016 年获得比尔肯特大学的硕士学位。他目前正在攻读博士学位。在苏黎世联邦理工学院的 Maksym Kovalenko 教授的监督下。马克西姆诉科瓦连科1982 年出生,在切尔诺夫策国立大学(乌克兰)学习化学,然后在约翰内斯·开普勒大学林茨(奥地利)继续深造,获得博士学位。2007 年与 Wolfgang Heiss 教授一起获得博士学位。随后,他加入芝加哥大学与Dmitri Talapin教授进行博士后培养(研究课题:胶体纳米晶体的无机配体封端)。他于 2011 年夏天加入苏黎世联邦理工学院,担任无机化学实验室的助理教授。2020年8月起任正教授。他的团队还隶属于 Empa(瑞士联邦材料科学与技术实验室)。Maksym Kovalenko 及其团队的研究活动主要集中在无机固态材料和纳米结构的化学、物理和应用。这项研究是 Empa-Fraunhofer ICS 联合项目“IE4B”活动的一部分,该项目由 ICON 资助计划提供资金支持。本文引用了其他 33 种出版物。这篇文章尚未被其他出版物引用。图 1. 基于多孔 LLZO 膜的锂石榴石固态电池充电过程示意图。图 2. 基于多孔 (a, b, c) 和致密/多孔 (d, e, f) LLZO 计算的锂石榴石 SSB 的重量 (a, b, d, e) 和体积 (c, f) 能量密度膜与多孔 LLZO 层的厚度和孔隙率的关系。电池由 NMC (70 vol%)/SSE (30 vol%) 阴极组成,其中 SSE 基于 LLZO 或 LPS。图 3. 多孔致密 LLZO SSE 在 Li/LLZO 界面处的锂电镀/剥离示意图。图 4。计算出在多孔(50% 孔隙率)LLZO SSE 中电镀/剥离 Li 时施加在 Li/LLZO 接触区域的电流密度与电镀 Li 的孔径和渗透深度的关系。电流密度以不同比例的 2D(顶部)和 3D(底部)格式显示:2 mA cm–2 (a) 和 0.1 mA cm –2 (b)。本文引用了其他 33 种出版物。支持信息可在 https://pubs.acs.org/doi/10.1021/accountsmr.2c00004 免费获得。能量密度计算参数、充电过程示意图、计算的重量和体积能量密度、计算的电流密度与孔径 (PDF) 大多数电子支持信息文件无需订阅 ACS 网络版即可获得。此类文件可以按文章下载以供研究使用(如果有与相关文章链接的公共使用许可,则该许可可能允许其他用途)。可通过 RightsLink 许可系统请求从 ACS 获得其他用途的许可:http://pubs.acs.org/page/copyright/permissions.html。
更新日期:2022-03-29
down
wechat
bug