当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and simulation of a millifluidic device for differential detection of SARS-CoV-2 and H1N1 based on triboelectricity
Bioelectrochemistry ( IF 5 ) Pub Date : 2022-03-16 , DOI: 10.1016/j.bioelechem.2022.108096
Tara Ghafouri 1 , Negin Manavizadeh 1
Affiliation  

Differential diagnosis of pathogenic diseases, presently coronavirus disease 2019 (COVID-19) and influenza, is crucial with due attention to their superspreading events, presumably long incubation period, particular complications, and treatments. In this paper, a label-free, self-powered, and ultrafast immunosensor device working based on triboelectric effect is proposed. Equilibrium constants of specific antibody-antigen reactions are accompanied by IEP-relevant electric charges of antigens to recognize SARS-CoV-2 and H1N1. Simulation attributes including fluid flow and geometrical parameters are optimized so that the maximum capture efficiency of 85.63% is achieved. Accordingly, antibody-antigen complexes form electric double layers (EDLs) across the channel interfaces. The resultant built-in electric field affects the following external electric field derived from triboelectricity, leading to the variation of open-circuit voltage as a sensing metric. The device is flexible to operate in conductor-to-dielectric single-electrode and contact-separation modes simultaneously. While the detection limit is reduced utilizing the single-electrode mode compared to the latter one, surface treatment of the triboelectric pair contributes to the sensitivity enhancement. A threshold value equal to −4.113 V is featured to discriminate these two viruses in a vast detectable region; however, further surface engineering can allow the on-site detection of any electrically-charged pathogen applying the emerging triboelectric immunosensor enjoying a lower detection limit.



中文翻译:

基于摩擦电的 SARS-CoV-2 和 H1N1 差异检测微流控装置的设计与仿真

致病性疾病(目前为 2019 年冠状病毒病 (COVID-19) 和流感)的鉴别诊断至关重要,要适当注意它们的超级传播事件、可能的长潜伏期、特殊并发症和治疗。在本文中,提出了一种基于摩擦电效应工作的无标记、自供电、超快免疫传感器装置。特定抗体-抗原反应的平衡常数伴随着抗原的 IEP 相关电荷以识别 SARS-CoV-2 和 H1N1。优化了包括流体流动和几何参数在内的模拟属性,从而实现了 85.63% 的最大捕获效率。因此,抗体-抗原复合物在通道界面形成双电层 (EDL)。由此产生的内置电场会影响来自摩擦电的后续外部电场,从而导致开路电压的变化作为传感指标。该器件可以灵活地同时在导体到电介质单电极和接触分离模式下工作。虽然与后者相比,使用单电极模式降低了检测限,但摩擦电对的表面处理有助于提高灵敏度。等于-4.113 V 的阈值可在广阔的可检测区域中区分这两种病毒;然而,进一步的表面工程可以允许应用具有较低检测限的新兴摩擦电免疫传感器现场检测任何带电病原体。导致开路电压的变化作为传感指标。该器件可以灵活地同时在导体到电介质单电极和接触分离模式下工作。虽然与后者相比,使用单电极模式降低了检测限,但摩擦电对的表面处理有助于提高灵敏度。等于-4.113 V 的阈值可在广阔的可检测区域中区分这两种病毒;然而,进一步的表面工程可以允许应用具有较低检测限的新兴摩擦电免疫传感器现场检测任何带电病原体。导致开路电压的变化作为传感指标。该器件可以灵活地同时在导体到电介质单电极和接触分离模式下工作。虽然与后者相比,使用单电极模式降低了检测限,但摩擦电对的表面处理有助于提高灵敏度。等于-4.113 V 的阈值可在广阔的可检测区域中区分这两种病毒;然而,进一步的表面工程可以允许应用具有较低检测限的新兴摩擦电免疫传感器现场检测任何带电病原体。虽然与后者相比,使用单电极模式降低了检测限,但摩擦电对的表面处理有助于提高灵敏度。等于-4.113 V 的阈值可在广阔的可检测区域中区分这两种病毒;然而,进一步的表面工程可以允许应用具有较低检测限的新兴摩擦电免疫传感器现场检测任何带电病原体。虽然与后者相比,使用单电极模式降低了检测限,但摩擦电对的表面处理有助于提高灵敏度。等于-4.113 V 的阈值可在广阔的可检测区域中区分这两种病毒;然而,进一步的表面工程可以允许应用具有较低检测限的新兴摩擦电免疫传感器现场检测任何带电病原体。

更新日期:2022-03-16
down
wechat
bug