当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene-Based Refractive Index Sensor Using Machine Learning for Detection of Mycobacterium Tuberculosis Bacteria
IEEE Transactions on NanoBioscience ( IF 3.9 ) Pub Date : 2022-03-02 , DOI: 10.1109/tnb.2022.3155264
Juveriya Parmar 1 , Shobhit K. Patel 2 , Vijay Katkar 3 , Ayyanar Natesan 4
Affiliation  

Rapid detection of mycobacterium tuberculosis bacteria is very important in reducing tuberculosis disease. We propose a label-free graphene-based refractive index sensor using a machine learning approach that detects mycobacterium tuberculosis bacteria. The biosensor is designed for higher sensitivity by analyzing different parameters like substrate thickness, resonator thickness, and angle of incidence. Machine learning is applied to predict the values of absorption for different wavelengths. The machine learning model is applied to four different parameters (angle of incidence, substrate thickness, resonator thickness, graphene chemical potential) of the biosensor. The plus shape metasurface is placed above the graphene-SiO2 hybrid layer to improve the sensitivity. The comparative analysis with other published designs is also presented. The proposed sensor with its higher sensitivity and ability to detect mycobacterium tuberculosis bacteria can be used in biomedical devices for diagnostic applications. Experiments are performed to check the K-Nearest Neighbors (KNN)-regressor model’s prediction efficiency for predicting absorption values of intermediate wavelengths. Different values of K and two test cases; R-50, U-50 are used to test the regressor models using the R2 Score as an evaluation metric. It is observed from the experimental results that, high prediction efficiency can be achieved using lower values of K in the KNN-Regressor model.

中文翻译:

基于石墨烯的折射率传感器使用机器学习检测结核分枝杆菌

结核分枝杆菌细菌的快速检测对于减少结核病非常重要。我们提出了一种基于无标记石墨烯的折射率传感器,该传感器使用检测结核分枝杆菌的机器学习方法。该生物传感器旨在通过分析基板厚度、谐振器厚度和入射角等不同参数来提高灵敏度。应用机器学习来预测不同波长的吸收值。机器学习模型应用于生物传感器的四个不同参数(入射角、基板厚度、谐振器厚度、石墨烯化学势)。正形超表面放置在石墨烯-SiO2 混合层上方以提高灵敏度。还介绍了与其他已发布设计的比较分析。所提出的传感器具有更高的灵敏度和检测结核分枝杆菌的能力,可用于诊断应用的生物医学设备。进行实验以检查 K 最近邻 (KNN) 回归模型预测中间波长吸收值的预测效率。不同的 K 值和两个测试用例;R-50、U-50 用于使用 R2 分数作为评估指标来测试回归模型。从实验结果可以看出,在 KNN-Regressor 模型中使用较低的 K 值可以获得较高的预测效率。进行实验以检查 K 最近邻 (KNN) 回归模型预测中间波长吸收值的预测效率。不同的 K 值和两个测试用例;R-50、U-50 用于使用 R2 分数作为评估指标来测试回归模型。从实验结果可以看出,在 KNN-Regressor 模型中使用较低的 K 值可以获得较高的预测效率。进行实验以检查 K 最近邻 (KNN) 回归模型预测中间波长吸收值的预测效率。不同的 K 值和两个测试用例;R-50、U-50 用于使用 R2 分数作为评估指标来测试回归模型。从实验结果可以看出,在 KNN-Regressor 模型中使用较低的 K 值可以获得较高的预测效率。
更新日期:2022-03-02
down
wechat
bug