当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cascade i-motifs-dependent reversible electrochemical impedance strategy-oriented pH and terminal deoxynucleotidyl transferase biosensing
Bioelectrochemistry ( IF 5 ) Pub Date : 2022-02-17 , DOI: 10.1016/j.bioelechem.2022.108085
Yudi Zheng 1 , Dandan Hu 1 , Di Wu 2 , Kaiyue Hu 1 , Xinxin Ren 1 , Lingxia Qin 1 , Zhiyong Guo 1 , Sui Wang 1 , Yufang Hu 3 , Shaohua Ma 2
Affiliation  

In this study, we develop a novel and reversible electrochemical impedance strategy for pH and terminal deoxynucleotide transferase (TdT) analysis based on the TdT-assisted generation of long enough cytosine (C)-rich DNAs. The formation of this special DNA is rationally designed on 5′-thiol DNA modified Au electrode surface, and TdT can catalyze the extension of this 3′-OH end to form a long C-rich DNA in the presence of deoxycytidine triphosphate (dCTP). Here, we discover a reversible process, in which the TdT-generated C-rich DNA maintains an irregular single chain state under neutral conditions and some stable DNA i-motifs (cascade i-motifs) are formed due to the partial protonation of C under acidic conditions. More importantly, the electrochemical impedance spectroscopy (EIS) response varies with the configuration change of the TdT-mediated C-rich DNA under different pH conditions. In view of this, a unique EIS switch (“on-off-on”) is constructed faithfully with the configuration change, thus achieving pH analysis well. Additionally, the TdT activity can be also detected well by recording the EIS response, because it can catalyze the DNA tailing process up to hundreds of cytosines; on the contrary, if its inhibitor exists, TdT-based extension and formation of cascade i-motifs will not occur. Using this strategy, the detection of limit for TdT is 0.79 × 10-5 U/mL (pH 7.0) and 0.25 × 10-5 U/mL (pH 5.8) (S/N = 3), respectively. All the above features make our biosensor a promising assay for in situ monitoring of pH and TdT in complex clinical diagnosis.



中文翻译:

级联基序依赖可逆电化学阻抗策略导向的pH和末端脱氧核苷酸转移酶生物传感

在这项研究中,我们开发了一种新颖且可逆的 基于 TdT 辅助生成足够长的富含胞嘧啶 (C) 的 DNA 的 pH 和末端脱氧核苷酸转移酶 (TdT) 分析的电化学阻抗策略。这种特殊DNA的形成是在5′-硫醇DNA修饰的Au电极表面上合理设计的,在脱氧胞苷三磷酸(dCTP)存在的情况下,TdT可以催化这个3′-OH末端的延伸形成长的富含C的DNA . 在这里,我们发现了一个可逆过程,其中 TdT 产生的富含 C 的 DNA 在中性条件下保持不规则的单链状态,并且由于 C 的部分质子化形成了一些稳定的 DNA i-motifs(级联 i-motifs)。酸性条件。更重要的是,电化学阻抗谱 (EIS) 响应随 TdT 介导的富 C DNA 在不同 pH 条件下的构型变化而变化。有鉴于此,随着配置的变化,忠实地构建了独特的EIS开关(“on-off-on”),从而很好地实现了pH分析。此外,通过记录 EIS 响应也可以很好地检测 TdT 活性,因为它可以催化多达数百个胞嘧啶的 DNA 拖尾过程;相反,如果存在其抑制剂,则不会发生基于TdT的延伸和级联i-motifs的形成。使用此策略,TdT 的检测极限为 0.79 × 10 不会发生基于 TdT 的扩展和级联 i-motif 的形成。使用此策略,TdT 的检测极限为 0.79 × 10 不会发生基于 TdT 的扩展和级联 i-motif 的形成。使用此策略,TdT 的检测极限为 0.79 × 10-5 U/mL (pH 7.0) 和 0.25 × 10 -5 U/mL (pH 5.8) (S/N = 3)。所有上述特性使我们的生物传感器成为在复杂临床诊断中原位监测 pH 和 TdT 的有前途的检测方法。

更新日期:2022-02-17
down
wechat
bug