当前位置: X-MOL 学术Combust. Theory Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large-eddy simulation of split injection strategies in RCCI conditions
Combustion Theory and Modelling ( IF 1.3 ) Pub Date : 2022-02-14 , DOI: 10.1080/13647830.2022.2036372
Bulut Tekgül 1 , Shervin Karimkashi 1 , Ossi Kaario 1 , Heikki Kahila 2 , Éric Lendormy 2 , Jari Hyvönen 2 , Ville Vuorinen 1
Affiliation  

In this study, we investigate the effect of different split injection strategies on ignition delay time (IDT) and heat release rate (HRR) characteristics in Reactivity Controlled Compression Ignition conditions via large-eddy simulation and finite-rate chemistry. A diesel surrogate (n-dodecane) is injected into a domain with premixed methane and oxidiser in two separate injection pulses. Three different split injection strategies are investigated by fixing the amount of total fuel mass: varying the first injection timing, varying the second injection timing, and changing the fuel mass ratio between the two injections at a fixed injection timing. A compression heating mass source term approach is utilised to take compression heating into account. The main findings of the study are as follows: (1) In general, the IDT shifts towards the top-dead centre when the first injection is advanced or the second injection is retarded. The size and spatial pattern of the ignition kernels are shown to depend on the dwell time between the injections. (2) A precisely timed first injection offered the best control over ignition and HRR characteristics. However, advancing the first injection may lead to over-dilution downstream, preventing volumetric ignition and reducing the peak HRR value. (3) Approximately 21% decrease in the maximum HRR value, as well as a factor of 2.8 increase in combustion duration could be achieved by advancing the first injection timing. (4) As indicated by frozen-flow chemistry analysis, in the investigated configurations, the reactivity stratification is controlled by mixture stratification rather than temperature. The findings indicate that the first injection controls the downstream reactivity stratification, offering ignition and HRR control.



中文翻译:

RCCI条件下分流喷射策略的大涡模拟

在本研究中,我们通过大涡模拟和有限速率化学研究了不同分流喷射策略对反应性控制压燃条件下点火延迟时间 (IDT) 和放热率 (HRR) 特性的影响。柴油替代品(n-十二烷)在两个单独的注入脉冲中注入具有预混合甲烷和氧化剂的区域。通过固定总燃料质量的量来研究三种不同的分流喷射策略:改变第一次喷射正时、改变第二次喷射正时以及在固定喷射正时改变两次喷射之间的燃料质量比。压缩加热质量源项方法用于考虑压缩加热。研究的主要发现如下: (1) 一般而言,当第一次注射提前或第二次注射延迟时,IDT向上止点移动。显示点火核的大小和空间模式取决于注射之间的停留时间。(2) 精确定时的首次喷射提供了对点火和 HRR 特性的最佳控制。但是,提前第一次喷射可能会导致下游过度稀释,从而阻止体积点火并降低峰值 HRR 值。(3) 通过提前第一次喷射正时可以实现最大 HRR 值降低约 21%,燃烧持续时间增加 2.8 倍。(4) 如冷冻流化学分析所示,在所研究的配置中,反应性分层受混合物分层而不是温度控制。研究结果表明,第一次喷射控制下游反应分层,提供点火和 HRR 控制。防止体积点火并降低 HRR 峰值。(3) 通过提前第一次喷射正时可以实现最大 HRR 值降低约 21%,燃烧持续时间增加 2.8 倍。(4) 如冷冻流化学分析所示,在所研究的配置中,反应性分层受混合物分层而不是温度控制。研究结果表明,第一次喷射控制下游反应分层,提供点火和 HRR 控制。防止体积点火并降低 HRR 峰值。(3) 通过提前第一次喷射正时可以实现最大 HRR 值降低约 21%,燃烧持续时间增加 2.8 倍。(4) 如冷冻流化学分析所示,在所研究的配置中,反应性分层受混合物分层而不是温度控制。研究结果表明,第一次喷射控制下游反应分层,提供点火和 HRR 控制。反应分层由混合物分层而不是温度控制。研究结果表明,第一次喷射控制下游反应分层,提供点火和 HRR 控制。反应分层由混合物分层而不是温度控制。研究结果表明,第一次喷射控制下游反应分层,提供点火和 HRR 控制。

更新日期:2022-02-14
down
wechat
bug