当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-boosting non-hydrolytic synthesis of Cl-passivated SnO2 nanocrystals for universal electron transport material of next-generation solar cells
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2022-01-19 , DOI: 10.1016/j.cej.2022.134635
Geunpyo Choe 1 , Ilhwan Ryu 1 , Jae Taek Oh 2 , Si Won Song 1 , Hyung Min Kim 1 , Hyosung Choi 2 , Sanggyu Yim 1
Affiliation  

Recently, tin oxide (SnO2) has attracted great attention as a promising electron transport layer (ETL) material for perovskite solar cells (PSCs) due to its high electron mobility, low-temperature fabrication and superior photocatalytic stability. However, there remains room for further utilization of the full potential of this material and improvement in power conversion efficiency (PCE) of devices, including establishment of controllable synthetic process and efficient surface modification. In this study, we first report on the novel tert-butyl alcohol (t-BuOH)-mediated non-hydrolytic synthesis of SnO2 nanocrystals (NCs) with effective pre-Cl-passivation without additional treatment. In this reaction, the by-products, tert-butyl chloride and water, are readily hydrolyzed to t-BuOH and chloride ions, which can be continuously reused and boost the reaction. Consequently, Cl effectively passivates the surface of SnO2 NCs as well as facilitates the dispersion stability, leading to reduced trap density and enhanced charge extraction characteristics of the SnO2 ETL. The device fabricated using the t-BuOH-mediated SnO2 NCs exhibits improved device efficiency, excellent reproducibility, reduced hysteresis, and longer device stability compared to the device using SnO2 NCs synthesized by conventional non-hydrolytic process. For the regular type (n-i-p) PSCs, the device achieves a PCE of 20.2% and maintains 97% of initial efficiency after 70 days under ambient conditions. In addition, unnecessary high temperature annealing and additional treatment of the non-hydrolytically synthesized SnO2 NCs enable their direct deposition on the perovskite layer, thereby leading to inverted type (p-i-n) PSCs with the best PCE of 17.0%.



中文翻译:

用于下一代太阳能电池通用电子传输材料的 Cl 钝化 SnO2 纳米晶体的自促进非水解合成

最近,氧化锡(SnO 2)由于其高电子迁移率、低温制造和优异的光催化稳定性而作为一种有前途的钙钛矿太阳能电池(PSC)电子传输层(ETL)材料引起了广泛关注。然而,仍有空间进一步利用这种材料的全部潜力并提高设备的功率转换效率(PCE),包括建立可控的合成工艺和高效的表面改性。在这项研究中,我们首先报道了新型丁醇 ( t -BuOH) 介导的 SnO 2纳米晶体 (NCs)的非水解合成,无需额外处理即可进行有效的预氯钝化。在这个反应中,副产物,丁基氯和水很容易水解成丁醇和氯离子,可以连续重复使用并促进反应。因此,Cl有效地钝化了SnO 2 NCs的表面并促进了分散稳定性,从而降低了陷阱密度并增强了SnO 2 ETL的电荷提取特性。与使用 SnO 2的器件相比,使用t -BuOH 介导的 SnO 2 NCs 制造的器件具有更高的器件效率、出色的重现性、更低的滞后和更长的器件稳定性通过常规非水解工艺合成的NC。对于常规型 (nip) PSC,该设备在环境条件下 70 天后实现了 20.2% 的 PCE,并保持了 97% 的初始效率。此外,对非水解合成的 SnO 2 NCs 进行不必要的高温退火和额外处理,使其能够直接沉积在钙钛矿层上,从而产生最佳 PCE 为 17.0% 的倒置型 (pin) PSCs。

更新日期:2022-01-20
down
wechat
bug