当前位置: X-MOL 学术Econ. Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Distal, High-grade Irish-type Orebody: Petrographic, Sulfur Isotope, and Sulfide Chemistry of the Island Pod Zn-Pb Orebody, Lisheen, Ireland
Economic Geology ( IF 5.8 ) Pub Date : 2022-03-01 , DOI: 10.5382/econgeo.4882
Aileen L. Doran 1 , Steven P. Hollis 1, 2, 3 , Julian F. Menuge 1 , Stephen J. Piercey 4 , Adrian J. Boyce 5 , Sean Johnson 1 , John Güven 1 , Oakley Turner 6
Affiliation  

Irish-type Zn-Pb deposits are important global sources of zinc, but despite a fundamental understanding of ore genesis within the Irish orefield, a detailed understanding of fluid migration and chemical evolution pathways related to sulfide and carbonate precipitation is lacking. We present the first petrographic, paragenetically constrained sulfur isotope and mineral chemistry study of mineralization at the Island Pod orebody, Lisheen deposit. The Island Pod orebody comprises high-grade mineralization that is less deformed than elsewhere in the Irish orefield. Consequently, studies of the Island Pod orebody and its mineralization provide information on the evolving nature of hydrothermal fluids involved in ore deposition.The Island Pod orebody consists almost exclusively of pyrite, sphalerite, and galena, with several stages of calcite and dolomite precipitation. Pre-ore, diagenetic pyrite is commonly overgrown by early main ore-stage pyrite, with both phases frequently replaced by main ore-stage sphalerite. In many cases, early main ore-stage pyrite is texturally zoned and exhibits chemical zoning patterns, reflecting that episodic influxes of hydrothermal fluids contained variable concentrations of As, Co, Ni, and Tl. The main ore stage was dominated by the formation of sphalerite and galena from mineralizing fluids that were depleted in these trace elements (e.g., As, Co, Tl) compared to the early main ore stage. Sulfur isotope analysis reveals four distinctive but slightly overlapping isotopic groupings, corresponding to different mineral and paragenetic stages: (1) δ34S values range from –47.7 to –30.7‰, associated with diagenetic pyrite; (2) δ34S values range from –34.3 to –14.7‰, related to early main ore-stage pyrite; (3) δ34S values range from –15.5 to +1.7‰, corresponding to main ore-stage sphalerite; and (4) δ34S values range from –11.1 to +17.4‰, associated with galena. Large variations in S isotope composition are common at intragrain and at other small spatial scales. The textures, paragenetic sequence, and ranges in δ34S values are consistent with hydrothermal sulfide deposition where the fluids containing bacteriogenic sulfide mixed with metal-bearing fluids. Replacement and remobilization from other Lisheen orebodies may have contributed to some of the higher sulfur isotope ratios observed in the Island Pod orebody.The excellent preservation of sulfide textures in the Island Pod orebody observed during this study demonstrates that it is an ideal location to study hydrothermal fluid evolution, including episodic fluid flow, mixing, precipitation, and compositional variations during the early main ore stage. In other Irish Zn-Pb orebodies, these early-ore textures are often obscured due to more complex dissolution and replacement processes, making interpretation of the early hydrothermal activity challenging. Consequently, the petrographic, mineral chemistry, and sulfur isotope studies of the Island Pod orebody presented here contribute to an enhanced understanding of ore-forming processes in similar deposits, where mineralization is often associated with more complex deformation or repeated pulses of hydrothermal activity.

中文翻译:

远端高品位爱尔兰型矿体:Island Pod Zn-Pb 矿体的岩石学、硫同位素和硫化物化学,Lisheen,爱尔兰

爱尔兰型 Zn-Pb 矿床是重要的全球锌来源,但尽管对爱尔兰矿田内的矿石成因有基本的了解,但仍缺乏对与硫化物和碳酸盐沉淀相关的流体运移和化学演化途径的详细了解。我们介绍了 Lisheen 矿床 Island Pod 矿体的第一个岩相学、共生约束硫同位素和矿物化学研究。Island Pod 矿体包含高品位矿化,其变形程度低于爱尔兰矿田的其他地方。因此,对 Island Pod 矿体及其矿化的研究提供了有关矿石沉积所涉及的热液流体演化性质的信息。Island Pod 矿体几乎完全由黄铁矿、闪锌矿和方铅矿组成,有几个阶段的方解石和白云石沉淀。前矿、成岩黄铁矿通常被早期主矿阶段黄铁矿覆盖,两相经常被主矿阶段闪锌矿取代。在许多情况下,早期主矿阶段黄铁矿具有结构分区并表现出化学分区模式,这反映了热液的间歇性流入含有不同浓度的 As、Co、Ni 和 Tl。与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ 成岩黄铁矿通常被早期主矿阶段黄铁矿覆盖,两相经常被主矿阶段闪锌矿取代。在许多情况下,早期主矿阶段黄铁矿具有结构分区并表现出化学分区模式,这反映了热液的间歇性流入含有不同浓度的 As、Co、Ni 和 Tl。与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ 成岩黄铁矿通常被早期主矿阶段黄铁矿覆盖,两相经常被主矿阶段闪锌矿取代。在许多情况下,早期主矿阶段黄铁矿具有结构分区并表现出化学分区模式,这反映了热液的间歇性流入含有不同浓度的 As、Co、Ni 和 Tl。与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ 早期主矿阶段黄铁矿具有结构分区和化学分区模式,反映了热液的间歇性流入含有不同浓度的As、Co、Ni和Tl。与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ 早期主矿阶段黄铁矿具有结构分区和化学分区模式,反映了热液的间歇性流入含有不同浓度的As、Co、Ni和Tl。与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ 与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ 与早期主要矿石阶段相比,主要矿石阶段主要是由矿化流体形成的闪锌矿和方铅矿,与早期主要矿石阶段相比,这些微量元素(例如,As、Co、Tl)被耗尽。硫同位素分析揭示了四个独特但略有重叠的同位素组,对应于不同的矿物和共生阶段:(1)δ34 S 值范围为–47.7 至–30.7‰,与成岩黄铁矿有关;(2) δ 34 S 值范围为–34.3~–14.7‰,与早期主矿阶段黄铁矿有关;(3) δ 34 S 值范围为–15.5~+1.7‰,对应主矿阶段闪锌矿;(4) δ 34 S 值范围为–11.1 至+17.4‰,与方铅矿有关。S同位素组成的大变化在粒内和其他小空间尺度上很常见。δ 34 中的纹理、共生序列和范围S 值与热液硫化物沉积一致,其中含有细菌硫化物的流体与含金属的流体混合。来自其他 Lisheen 矿体的置换和重新活化可能导致在 Island Pod 矿体中观察到的一些较高的硫同位素比率。在本研究期间观察到的 Island Pod 矿体中硫化物结构的良好保存表明它是研究热液的理想地点流体演化,包括早期主要成矿阶段的阶段性流体流动、混合、沉淀和成分变化。在其他爱尔兰 Zn-Pb 矿体中,由于更复杂的溶解和置换过程,这些早期矿石结构常常被掩盖,这使得对早期热液活动的解释具有挑战性。因此,岩相学、矿物化学、
更新日期:2022-01-12
down
wechat
bug