当前位置: X-MOL 学术J. Loss Prev. Process. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on deflagration process of LPG/DME blended combustible gas cloud in open space
Journal of Loss Prevention in the Process Industries ( IF 3.5 ) Pub Date : 2022-01-11 , DOI: 10.1016/j.jlp.2022.104732
Jiaxing Huang 1 , Zhenyi Liu 1 , Mingzhi Li 1 , Yuanbo Sun 1
Affiliation  

In order to reveal the deflagration characteristics and evolution law of LPG (liquefied petroleum gas)/DME (dimethyl ether) blended gas cloud under normal temperature and pressure in open space under different equivalence ratios and DME contents (0%、30%、50%、70%、100%), experiments and numerical simulations were conducted to study the deflagration overpressure, flame speed, gas velocity and their interactions, and the sensitivity analysis of key elementary reactions of LPG/DME blended gas was carried out. The results showed that the addition of DME can elevate the deflagration intensity of LPG, and in the same equivalent ratio the more of DME was blended into LPG, the greater the peak overpressure was, and so as to the maximum flame speed and the peak gas velocity. What's more, within certain limits the peak overpressure generated by gas deflagration showed a linear increase with the increase of the maximum flame speed. During the gas cloud deflagration, the flame speed went through three stages, including flame formation, acceleration and attenuation, and the DME blended ratio (λ) showed significant effect on the flame acceleration process. Then, the formation mechanism of overpressure and the state field distribution during gas cloud deflagration were proposed. The chemical reaction rate has a decisive effect on the flame speed, and the maximum flame speed restricts the peak overpressure and the peak gas velocity. Finally, the effect of promoting reaction is dominant after the addition of DME according to the sensitivity analysis.



中文翻译:

开放空间LPG/DME混合可燃气云爆燃过程研究

为揭示LPG(液化石油气)/DME(二甲醚)混合气云在不同当量比和DME含量(0%、30%、50%)下露天常温常压下的爆燃特征及演化规律、70%、100%),通过实验和数值模拟研究了爆燃超压、火焰速度、气体速度及其相互作用,并对LPG/DME混合气关键元反应进行了敏感性分析。结果表明,添加二甲醚可以提高液化石油气的爆燃强度,在相同当量比下,二甲醚掺入液化石油气中的越多,峰值超压越大,最大火焰速度和峰值气体也越大。速度。更重要的是,在一定限度内,气体爆燃产生的峰值超压随最大火焰速度的增加呈线性增加。在气云爆燃过程中,火焰速度经历了火焰形成、加速和衰减三个阶段,二甲醚混合比(λ)对火焰加速过程有显着影响。然后,提出了气云爆燃过程中超压的形成机制和状态场分布。化学反应速率对火焰速度有决定性影响,最大火焰速度限制了峰值超压和峰值气体速度。最后,根据敏感性分析,添加二甲醚后促进反应的效果占主导地位。在气云爆燃过程中,火焰速度经历了火焰形成、加速和衰减三个阶段,二甲醚混合比(λ)对火焰加速过程有显着影响。然后,提出了气云爆燃过程中超压的形成机制和状态场分布。化学反应速率对火焰速度有决定性影响,最大火焰速度限制了峰值超压和峰值气体速度。最后,根据敏感性分析,添加二甲醚后促进反应的效果占主导地位。在气云爆燃过程中,火焰速度经历了火焰形成、加速和衰减三个阶段,二甲醚混合比(λ)对火焰加速过程有显着影响。然后,提出了气云爆燃过程中超压的形成机制和状态场分布。化学反应速率对火焰速度有决定性影响,最大火焰速度限制了峰值超压和峰值气体速度。最后,根据敏感性分析,添加二甲醚后促进反应的效果占主导地位。提出了气云爆燃过程中超压的形成机制和状态场分布。化学反应速率对火焰速度有决定性影响,最大火焰速度限制了峰值超压和峰值气体速度。最后,根据敏感性分析,添加二甲醚后促进反应的效果占主导地位。提出了气云爆燃过程中超压的形成机制和状态场分布。化学反应速率对火焰速度有决定性影响,最大火焰速度限制了峰值超压和峰值气体速度。最后,根据敏感性分析,添加二甲醚后促进反应的效果占主导地位。

更新日期:2022-01-13
down
wechat
bug