当前位置: X-MOL 学术Land Degrad. Dev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Root exudates with low C/N ratios accelerate CO2 emissions from paddy soil
Land Degradation & Development ( IF 4.7 ) Pub Date : 2022-01-07 , DOI: 10.1002/ldr.4198
Guan Cai 1, 2 , Muhammad Shahbaz 3 , Tida Ge 1, 2, 4 , Yajun Hu 1 , Baozhen Li 1 , Hongzhao Yuan 1 , Yi Wang 1, 5 , Yuhuai Liu 1, 2 , Qiong Liu 1 , Olga Shibistova 2, 6 , Leopold Sauheitl 2 , Jinshui Wu 1 , Georg Guggenberger 2 , Zhenke Zhu 1, 4
Affiliation  

Root exudates can significantly modify microbial activity and soil organic matter (SOM) mineralization. However, how root exudates and their C/N stoichiometric ratios control rice field (paddy) soil C mineralization is poorly understood. This study used a mixture of glucose, oxalic acid, and alanine as root exudate mimics for three C/N stoichiometric ratios (CN6, CN10, and CN80) to explore the underlying mechanisms involved in SOM mineralization. The input of root exudates enhanced CO2 emissions by 1.8–2.3-fold that of soil with only C additions (C-only). Artificial root exudates with low C/N ratios (CN6 and CN10) increased the metabolic quotient (qCO2) by 12% over those with higher stoichiometric ratios (CN80 and C-only), suggesting a relatively high energy demand for microorganisms to acquire organic N from SOM by increasing N-hydrolase production. The increase of stoichiometric ratios of C- to N-hydrolase [β-1,4-glucosidase to β-1,4-N-acetyl glucosaminidase (NAG)] promoted SOM degradation compared to those involved in organic C- and N-degradation, which had a significant positive correlation with qCO2. The stoichiometric ratios of microbial biomass were positively correlated with C use efficiency, indicating root exudates with higher C/N ratios provide an undersupply of N for microorganisms that trigger the release of N-degrading extracellular enzymes. Our findings showed that the C/N stoichiometry of root exudates controlled SOM mineralization by affecting the specific response of the microbial biomass through the activity of C- and N-releasing extracellular enzymes to adjust the microbial C/N ratio.

中文翻译:

低碳氮比的根系分泌物加速稻田土壤的二氧化碳排放

根系分泌物可以显着改变微生物活性和土壤有机质 (SOM) 矿化。然而,人们对根系分泌物及其 C/N 化学计量比如何控制稻田(稻田)土壤 C 矿化知之甚少。本研究使用葡萄糖、草酸和丙氨酸的混合物作为三种 C/N 化学计量比(CN6、CN10 和 CN80)的根分泌物模拟物,以探索 SOM 矿化的潜在机制。与仅添加 C(仅 C)的土壤相比,根系分泌物的输入使 CO 2排放量增加了 1.8-2.3 倍。具有低 C/N 比(CN6 和 CN10)的人工牙根分泌物增加了代谢商(qCO 2) 比化学计量比较高的那些(CN80 和 C-only)高 12%,这表明微生物通过增加 N-水解酶的产量从 SOM 中获取有机 N 的能量需求相对较高。与参与有机 C-和 N-降解的那些相比,C-与 N-水解酶 [β-1,4-葡萄糖苷酶与 β-1,4-N-乙酰氨基葡萄糖苷酶 (NAG)] 的化学计量比的增加促进了 SOM 降解, 与 qCO 2呈显着正相关. 微生物生物量的化学计量比与 C 利用效率呈正相关,表明具有较高 C/N 比的根系分泌物为触发 N 降解细胞外酶释放的微生物提供了 N 供应不足。我们的研究结果表明,根系分泌物的 C/N 化学计量通过影响微生物生物量的特定反应来控制 SOM 矿化,这是通过释放 C 和 N 的细胞外酶的活性来调节微生物 C/N 比。
更新日期:2022-01-07
down
wechat
bug