当前位置: X-MOL 学术Annu. Rev. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow Control for Unmanned Air Vehicles
Annual Review of Fluid Mechanics ( IF 27.7 ) Pub Date : 2022-01-05 , DOI: 10.1146/annurev-fluid-032221-105053
David Greenblatt 1 , David R. Williams 2
Affiliation  

The pervasiveness of unmanned air vehicles (UAVs), from insect to airplane scales, combined with active flow control maturity, has set the scene for vehicles that differ markedly from present-day configurations. Nano and micro air vehicles, with characteristic Reynolds numbers typically less than 105, rely on periodically generated leading-edge vortices for lift generation, propulsion, and maneuvering. This is most commonly achieved by mechanical flapping or pulsed plasma actuation. On larger UAVs, with Reynolds numbers greater than 105, externally driven and autonomous fluidic systems continue to dominate. These include traditional circulation control techniques, autonomous synthetic jets, and discrete sweeping jets. Plasma actuators have also shown increased technological maturity. Energy efficiency is a major challenge, whether it be batteries and power electronics on nano and micro air vehicles or acceptably low compressor bleed on larger UAVs. Further challenges involve the development of aerodynamic models based on experiments or numerical simulations, as well as flight dynamics models.

中文翻译:


无人机流量控制

无人驾驶飞行器 (UAV) 的普及,从昆虫到飞机规模,再加上主动流动控制的成熟度,为与当今配置显着不同的飞行器奠定了基础。具有特征雷诺数通常小于 10 5 的纳米和微型飞行器依靠周期性产生的前缘涡流来产生升力、推进和机动。这通常是通过机械拍动或脉冲等离子体驱动来实现的。在雷诺数大于 10 5 的大型无人机上,外部驱动和自主流体系统继续占主导地位。其中包括传统的循环控制技术、自主合成射流和离散扫掠射流。等离子执行器的技术成熟度也有所提高。能源效率是一项重大挑战,无论是纳米和微型飞行器上的电池和电力电子设备,还是大型无人机上可接受的低压缩机排气。进一步的挑战涉及基于实验或数值模拟的空气动力学模型以及飞行动力学模型的开发。

更新日期:2022-01-06
down
wechat
bug