当前位置: X-MOL 学术Clin. Oral. Implants Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
EAO-429 / OC-PIB-012 | The effect of magnetic nanoparticles on osteogenic and cytomechanic behavior: A Preliminary research
Clinical Oral Implants Research ( IF 4.3 ) Pub Date : 2021-12-28 , DOI: 10.1111/clr.31_13855


Santosh Nelogi1,*; Anand Kumar Patil2; Ramesh Chowdary3

1Prosthdontics; 2Prosthodontics, KLE VK Institute of Dental Sciences, Belgaum; 3Prosthodontics, Raj Rajeshwari Dental College, Bangalore, India

Background: Magnetic nanoparticles can respond to magnetic fields, forces generated by magnetic nanoparticles under a magnetic field can significantly influence cell behaviors. Based on these factors, the present study we will be investigating the osteoinduction of a magnetic nanoparticles on surface treated titanium implants.

Aim/Hypothesis: The aim to build of this evidence and determine the potential applications of cytomechanics of osteoblast and fibroblast that were upregulated in response to the attached nanoparticles and exposure to a magnetic force may also play a role in osteoconduction and migration.

Material and Methods: We developed novel magnetic nanoparticles (MNs) coated with chitosan (CS) (CS-MNs) for enhancing cellular migration using magnetic force. CS-MNs were characterized by XRD, UV, and SEM. The CS-MNs where spherical shape with a diameter from 10nm to 15nm. NovelTi hollow closed chamber with magnet within the chamber were fabricated and surface treated with CS-MNs. Influence of CS-MNs on human fibroblasts and osteoblast like cell (MG63) was assessed in terms of cell adhesion/viability, morphology, particle uptake and cytoskeletal organization. The intracellular force on cellular uptake of CS-MNs by magnetic force and its responses to intracellular force were observed using fluorescent microscopy. The cell viability was measured using MTT assay and Migration by Boyden Chamber Assays .Matrix mineralization was assessed by von Kossa histochemical staining.

Results: Our results indicated that CS-MNs were taken up by theMG63 cells and fibroblast cells. CS-MNs inside the cell could be relocated onto the discs by magnetic force. No cytotoxicity was found in our experiments. By comparing intracellular relocalization with the migration of theMG63, fibroblast cell line. The cell number on the magnetizedTi closed chambers CS-MNs group significantly increased compared to control groups at 6, 12, and 24 h (p < 0.05) with higher osteoblast metabolic activity and mineralization on magnetized Ti chambers than control. The proliferation index of osteoblasts was faster on magnetized chambers than on control as evidenced by the proliferation indices of 4.89 ± 0.03 and 2.42 ± 0.16, respectively. Migration was enhanced by introducing novel MNs into cells and by the presence of magnetic force showed that CS MNs significantly promoted osteoblast and fibroblast density

Conclusion and Clinical implications: This preliminary research has established critical features, magnetic nanoparticles under the magnetic force promotes osteogenesis, mineralization and migration resulting early osseointegration. Based on safety and reliability, this research will indeed support humanity. We think MNs that can regenerate the organizational structure to be crucial in the subsequent translation to clinical applications.

Disclosure of Interest: None Declared

Keywords: osseointegration, osteoblast, surface modification



中文翻译:

EAO-429 / OC-PIB-012 | 磁性纳米粒子对成骨和细胞力学行为的影响:初步研究

桑托什·内洛吉1,* ; 阿南德·库马尔·帕蒂尔2 ; 拉梅什杂烩3

1修复学;2口腔修复学,KLE VK 牙科科学研究所,贝尔高姆;3 Prosthodontics,Raj Rajeshwari Dental College,印度班加罗尔

背景:磁性纳米粒子可以对磁场做出反应,磁性纳米粒子在磁场下产生的力可以显着影响细胞行为。基于这些因素,本研究将研究磁性纳米粒子对表面处理过的钛植入物的骨诱导作用。

目的/假设:旨在建立这一证据并确定成骨细胞和成纤维细胞的细胞力学的潜在应用,这些细胞力学响应附着的纳米颗粒和暴露于磁力而上调,也可能在骨传导和迁移中发挥作用。

材料与方法:我们开发了涂有壳聚糖 (CS) (CS-MNs) 的新型磁性纳米粒子 (MNs),用于利用磁力增强细胞迁移。CS-MNs 通过 XRD、UV 和 SEM 进行表征。CS-MNs 为球形,直径为 10nm 到 15nm。NovelTi 空心封闭腔室中装有磁铁,并用 CS-MNs 进行表面处理。CS-MNs 对人成纤维细胞和成骨细胞样细胞 (MG63) 的影响在细胞粘附/活力、形态、颗粒摄取和细胞骨架组织方面进行了评估。使用荧光显微镜观察细胞内磁力对 CS-MNs 细胞摄取的影响及其对细胞内力的反应。使用 MTT 测定和 Boyden Chamber Assays 的迁移测量细胞活力。

结果:我们的结果表明CS-MNs被MG63细胞和成纤维细胞吸收。细胞内的 CS-MN 可以通过磁力重新定位到磁盘上。在我们的实验中没有发现细胞毒性。通过比较细胞内重新定位与MG63、成纤维细胞系的迁移。与对照组相比,磁化钛封闭室 CS-MNs 组上的细胞数量在 6、12 和 24 小时显着增加(p< 0.05) 与对照相比,磁化钛室具有更高的成骨细胞代谢活性和矿化。成骨细胞的增殖指数在磁化室上比在控制上更快,如增殖指数分别为 4.89 ± 0.03 和 2.42 ± 0.16 所证明的那样。通过将新的 MNs 引入细胞和磁力的存在来增强迁移,表明 CS MNs 显着促进了成骨细胞和成纤维细胞的密度

结论和临床意义:这项初步研究已经确定了关键特征,磁力作用下的磁性纳米颗粒促进成骨、矿化和迁移,导致早期骨整合。基于安全性和可靠性,这项研究确实会支持人类。我们认为可以重新生成组织结构的 MN 在随后的临床应用转化中至关重要。

利益披露:无申报

关键词: 骨整合, 成骨细胞, 表面改性

更新日期:2021-12-29
down
wechat
bug