当前位置: X-MOL 学术Combust. Theory Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of the influence of vent conditions on the characteristics of hydrogen explosion in confined space
Combustion Theory and Modelling ( IF 1.3 ) Pub Date : 2021-12-22 , DOI: 10.1080/13647830.2021.2008013
Ning Zhou 1, 2 , Yuan Mei 3 , Xue Li 1 , Bing Chen 4 , Wei-Qiu Huang 1 , Hui-Jun Zhao 1 , Xiong-Jun Yuan 1
Affiliation  

To reduce the injury caused by hydrogen explosion accident, numerical simulation study is carried out to study the characteristics of hydrogen explosion in confined space under different venting conditions. The results show that in the process of the flame passing through the side vent, the position of the side vent can affect the leading role of the side venting on the flame front distortion. When the flame front is in front of the side vent, the flame is accelerated by the traction of co-flow. When the flame front passes through the side vent, the flame propagation speed under various working conditions is greatly reduced due to the combined action of reflected wave and vertical flow field. When the front of the flame is located behind the side vent, the flame propagation speed fluctuates greatly only when the side vent is 1 m away from the ignition end, and the flame propagation to the end of the pipe is kept at a low speed in other venting conditions. The pressure relief effect of the side vent is positively related to the size of the side vent. When the side vent is located in the middle of the pipe, the pressure relief effect is the best. When the size of the vent is small, the pressure relief effect is greatly affected by the location of the vent. The peak overpressure in h-1-40, h-3-40, h-5-40 decreases by 49.21%, 83.89%% and 78.03%, respectively. With the increase of the size of the side vent, the pressure relief effect of the side vent is almost not affected by its size. The peak overpressure in H-1-80, H-3-80, H-5-80 only decreases by 90.17%, 94.99% and 92.78%, respectively.



中文翻译:

通风口条件对密闭空间氢气爆炸特性影响的数值模拟

为减少氢气爆炸事故造成的伤害,开展数值模拟研究,研究不同泄压条件下密闭空间氢气爆炸的特性。结果表明,在火焰通过侧通风口的过程中,侧通风口的位置会影响侧通风口对火焰前沿畸变的主导作用。当火焰前沿在侧通风口前面时,火焰被并流的牵引加速。当火焰锋面通过侧通风口时,由于反射波和垂直流场的共同作用,各种工况下的火焰传播速度大大降低。当火焰的前部位于侧通风口的后面时,火焰传播速度仅在侧通风口距离点火端1 m时波动较大,而在其他通风条件下火焰传播到管端的速度保持较低。侧排气口的泄压效果与侧排气口的大小成正相关。当侧排气口位于管道中部时,泄压效果最好。当泄压孔尺寸较小时,泄压效果受泄压孔位置的影响较大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。在其他排气条件下,火焰向管端的传播保持在低速。侧排气口的泄压效果与侧排气口的大小成正相关。当侧排气口位于管道中部时,泄压效果最好。当泄压孔尺寸较小时,泄压效果受泄压孔位置的影响较大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。在其他排气条件下,火焰向管端的传播保持在低速。侧排气口的泄压效果与侧排气口的大小成正相关。当侧排气口位于管道中部时,泄压效果最好。当泄压孔尺寸较小时,泄压效果受泄压孔位置的影响较大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。侧排气口的泄压效果与侧排气口的大小成正相关。当侧排气口位于管道中部时,泄压效果最好。当泄压孔尺寸较小时,泄压效果受泄压孔位置的影响较大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。侧排气口的泄压效果与侧排气口的大小成正相关。当侧排气口位于管道中部时,泄压效果最好。当泄压孔尺寸较小时,泄压效果受泄压孔位置的影响较大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。泄压效果受排气口位置的影响很大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。泄压效果受排气口位置的影响很大。h-1-40、h-3-40、h-5-40的峰值超压分别下降49.21%、83.89%%和78.03%。随着侧排气口尺寸的增大,侧排气口的泄压效果几乎不受其尺寸的影响。H-1-80、H-3-80、H-5-80的峰值超压仅分别下降了90.17%、94.99%和92.78%。

更新日期:2021-12-22
down
wechat
bug