当前位置: X-MOL 学术IEEE Trans. Sustain. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multi-Stage Distributionally Robust Stochastic Dual Dynamic Programming to Multi-Period Economic Dispatch With Virtual Energy Storage
IEEE Transactions on Sustainable Energy ( IF 8.8 ) Pub Date : 2021-08-18 , DOI: 10.1109/tste.2021.3105525
Tao Ding , Xiaosheng Zhang , Runzhao Lu , Ming Qu , Mohammad Shahidehpour , Yuankang He , Tianen Chen

A virtual energy storage (VES) model is proposed in this paper to accommodate renewable energy under a special market regulation. Such VESs can provide or consume electricity to the main power grid under the premise that the daily net electricity energy is balanced. Furthermore, a multi-stage distributionally robust optimization (MSDRO) model is set up in this paper to address the temporal uncertainties in the day-ahead economic dispatch model. Compared with the traditional two-stage distributionally robust optimization, the proposed multi-stage approach provides more flexibilities so that the decision variables can be adjusted at each time period, leading to a complex nested formulation. To efficiently solve the MSDRO model, a stochastic dual dynamic programming method is employed to decompose the original large-scale optimization model into several sub-problems in the stages, as two steps: forward pass and backward pass. In the forward pass, the expected cost-to-go function is approximated by piecewise-linear functions and then several samples are used to generate a lower bound; the backward pass will generate Benders’ cuts at each stage from the solution of the forward pass. The forward and backward passes are performed iteratively until the convergence is reached. Numerical results on an IEEE 118-bus system and a practical power system in China verify the proposed method.
更新日期:2021-08-18
down
wechat
bug