当前位置: X-MOL 学术Desalination › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predicting capacitive deionization processes using an electrolytic-capacitor (ELC) model: 2D dynamics, leakages, and multi-ion solutions
Desalination ( IF 9.9 ) Pub Date : 2021-12-21 , DOI: 10.1016/j.desal.2021.115493
Johan Nordstrand 1 , Léa Zuili 1 , Esteban Alejandro Toledo-Carrillo 1 , Joydeep Dutta 1, 2
Affiliation  

Clean water and affordable energy are critical worldwide challenges for which electrolytic capacitors are increasingly considered as viable alternatives. The upcoming technology of capacitive deionization (CDI) uses similar electrolytic capacitors for the desalination of water. The current work presents a new method that leverages existing support for supercapacitors in the form of current-distribution models, which enables detailed and separated descriptions of the rate-limiting resistances. Crucially, the new model blends this basis with a novel formulation centered on the adsorption of chemical species in CDI. Put together, it is adaptable to solving a wide range of problems related to chemical species in electrochemical cells. The resulting electrolytic-capacitor (ELC) model has enhanced stability and ease-of-implementation for simulations in 2D. The results demonstrate that the model accurately simulates dynamics CDI performance under a variety of operational conditions. The enhanced stability together with the adaptability further allows tractable simulations of leakage reactions and even handling multi-ion deionization in 2D. Moreover, the model naturally blends with existing interfaces in COMSOL Multiphysics, which automatically generalizes, stabilizes, and simplifies the implementation. In conclusion, the ELC model is user-friendly and tractable for standard simulations while also being especially powerful when simulating complex structures, leakage reactions, and multi-ion solutions.



中文翻译:

使用电解电容器 (ELC) 模型预测电容去离子过程:2D 动力学、泄漏和多离子解决方案

清洁水和负担得起的能源是全球面临的重大挑战,越来越多地将电解电容器视为可行的替代品。即将到来的电容去离子 (CDI) 技术使用类似的电解电容器来淡化海水。当前的工作提出了一种新方法,该方法以电流分布模型的形式利用对超级电容器的现有支持,从而能够对限速电阻进行详细和单独的描述。至关重要的是,新模型将这一基础与以 CDI 中化学物质吸附为中心的新型公式相结合。总之,它适用于解决与电化学电池中化学物质相关的广泛问题。由此产生的电解电容器 (ELC) 模型具有增强的稳定性和易于实现的二维仿真。结果表明,该模型准确地模拟了各种操作条件下的动态 CDI 性能。增强的稳定性和适应性进一步允许对泄漏反应进行易处理的模拟,甚至可以在 2D 中处理多离子去离子。此外,该模型自然而然地与 COMSOL Multiphysics 中的现有接口融合在一起,从而自动泛化、稳定和简化实施。总之,ELC 模型对用户友好且易于处理标准模拟,同时在模拟复杂结构、泄漏反应和多离子解决方案时也特别强大。结果表明,该模型准确地模拟了各种操作条件下的动态 CDI 性能。增强的稳定性和适应性进一步允许对泄漏反应进行易处理的模拟,甚至可以在 2D 中处理多离子去离子。此外,该模型自然而然地与 COMSOL Multiphysics 中的现有接口融合在一起,从而自动泛化、稳定和简化实施。总之,ELC 模型对用户友好且易于处理标准模拟,同时在模拟复杂结构、泄漏反应和多离子解决方案时也特别强大。结果表明,该模型准确地模拟了各种操作条件下的动态 CDI 性能。增强的稳定性和适应性进一步允许对泄漏反应进行易处理的模拟,甚至可以在 2D 中处理多离子去离子。此外,该模型自然而然地与 COMSOL Multiphysics 中的现有接口融合在一起,从而自动泛化、稳定和简化实施。总之,ELC 模型对用户友好且易于处理标准模拟,同时在模拟复杂结构、泄漏反应和多离子解决方案时也特别强大。增强的稳定性和适应性进一步允许对泄漏反应进行易处理的模拟,甚至可以在 2D 中处理多离子去离子。此外,该模型自然而然地与 COMSOL Multiphysics 中的现有接口融合在一起,从而自动泛化、稳定和简化实施。总之,ELC 模型对用户友好且易于处理标准模拟,同时在模拟复杂结构、泄漏反应和多离子解决方案时也特别强大。增强的稳定性和适应性进一步允许对泄漏反应进行易处理的模拟,甚至可以在 2D 中处理多离子去离子。此外,该模型自然而然地与 COMSOL Multiphysics 中的现有接口融合在一起,从而自动泛化、稳定和简化实施。总之,ELC 模型对用户友好且易于处理标准模拟,同时在模拟复杂结构、泄漏反应和多离子解决方案时也特别强大。

更新日期:2021-12-21
down
wechat
bug