当前位置: X-MOL 学术Crit. Care › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How to monitor thiopental administration in the intensive care unit for refectory status epilepticus or intracranial hypertension?
Critical Care ( IF 15.1 ) Pub Date : 2021-12-17 , DOI: 10.1186/s13054-021-03851-8
Erika Dabricot 1 , Inès Seqat 2 , Frédéric Dailler 1 , Sylvain Rheims 2, 3 , Sebastien Boulogne 2, 3 , Baptiste Balança 1, 3
Affiliation  

Thiopental continuous administration can be used as a rescue therapy for refractory status epilepticus (SE) or intracranial hypertension (IH). It induces an electroencephalographic (EEG) slowing up to a burst suppression state. The subsequent reduction in the cerebral metabolic demand and blood flow also allows decreasing the intracranial pressure (ICP) [1]. The continuous administration is usually guided both by thiopental serum concentration, to avoid accumulation, and efficacy on seizures or ICP. Thiopental side effects (hemodynamic dysfunction or immunosuppression) can occur at concentrations of 30–70 mg/ml [2, 3]. Conversely, the relation between serum concentrations and efficacy is less robust. In healthy subjects during anesthesia and in brain-injured patients, there is a great variability in the concentration needed to reach the same EEG changes [4, 5], with an overlap between the therapeutic and toxic ranges. The digitalization of the EEG signal provides quantitative indexes at the bedside and may allow tailoring sedative administration in the intensive care unit (ICU). For instance, the suppression ratio (SR) provides a metric of the depth of sedation during general anesthesia [5]. Since the target of thiopental sedation is to reach a discontinuous EEG activity (i.e., SR ≥ 10%); the aim of the herein study was to evaluate the relationship between the thiopental concentration and the SR in patients with a refractory SE or IH.

We conducted a retrospective study (2013–2020) in adult patients sedated with thiopental and monitored with a continuous EEG, in the neurological ICU of the Hospices Civils de Lyon (France). We analyzed EEG signals of 2 h windows around the serum measurements (1 h before and after). Suppression periods were defined by an EEG amplitude < 10 µV for ≥ 400 ms [6] and was calculated on 2 s epochs on the central derivation with the best signal (Fz-Cz or adjacent; BRAIN-QUICK, Micromed). We took the mean SR of the 2 h. The relation between concentration and duration of thiopental administration and the SR was analyzed with a linear mixed effect model with the R software (lme4 library). The diagnostic accuracy of thiopental concentration to predict a discontinuous EEG was analyzed with a receiver operating characteristic curve (ROC, pROC library). Data are presented as their median and interquartile range.

We included 30 patients, 47% (n = 14/30) had a refractory SE. They were 39.5 years old [27.5–55.5], 30% (n = 9) were female, and 37% had a potent thiopental adverse effect (sepsis: n = 5; hemodynamic instability: n = 6). The median concentration of thiopental (n = 95 samples) was 16.5 mg/ml [8.5–23.1], with a median administration rate of 2.1 mg/kg/h [1.3–2.9]. At the blood sampling time, 45.3% (n = 43/95) of the EEG were discontinuous with heterogeneous SR decay time (Fig. 1). 74% of the EEG from patients with a SE did not have epileptic discharges and 68% of patients with an IH had an ICP < 25 mmHg. The ICP value was not significantly associated with the thiopental concentration. There was a significant association between thiopental concentration and SR, which was not dependent on the indication (SE or IH). However, for a given thiopental concentration, the level of SR was highly variable and thiopental concentration could not predict a discontinuous EEG (AUC of the ROC = 0.59 95%CI [0.47; 0.71], Fig. 2). Other sedative agents were also administered in 20 patients but did not significantly influence SR; their withdraw led to a SR decrease in 4 cases.

Fig. 1
figure1

Examples of suppression ratio (SR) changes during the 2 h surrounding the blood sample time. Three different examples of SR changes are plotted in blue. The first two curves show similar SR in the same patient with a constant midazolam infusion, whereas thiopental concentrations vary by a ratio of 3. The last curve of another patient without midazolam, shows a different SR decay while the thiopental concentration is comparable to the one of the second curve. The lower panel presents three raw EEG samples of the lower SR curve (arrows A, B and C) using three bipolar derivations (right: C4–T4, midline: Fz–Cz, and left: C3–T3, see EEG montage of the left) with a 0.53 Hz high-pass filter and an 80 Hz low-pass filter

Full size image
Fig. 2
figure2

Suppression ratio and thiopental serum concentration relationship. A Thiopental serum concentration changes during the first ten administration days. The dot color represents the suppression ratio at the sampling time (the color scale is on the B panel). B Mean suppression ratio of the 2 h EEG time window around the blood sampling time of the thiopental serum concentration (x-axis). The dashed line represents the slope of the linear regression model (Estimate = 0.65 95%CI [0.09;1.21], p = 0.02). C Receiver operating characteristic curve of thiopental serum concentration to predict a SR ≥ 10% (AUC = 0.59 95% CI [0.47;0.71])

Full size image

The main limitation of the herein study is its retrospective design. Given the heterogeneity of the EEG changes for a given thiopental administration, we would argue to have a continuous SR monitoring when using barbiturate to reach a discontinuous activity. The concomitant monitoring of electrophysiological data and serum concentration might help tailor the individual administration and monitor the effect of thiopental on brain activity. Such strategy will need to be evaluated in a prospective trial.

The datasets used during the current study are available from the corresponding author on reasonable request.

  1. 1.

    Russo H, Bressolle F. Pharmacodynamics and pharmacokinetics of thiopental. Clin Pharmacokinet. 1998;35:95–134.

    CAS Article Google Scholar

  2. 2.

    Huynh F, Mabasa VH, Ensom MHH. A critical review: Does thiopental continuous infusion warrant therapeutic drug monitoring in the critical care population? Ther Drug Monit. 2009;31:153–69.

    CAS Article Google Scholar

  3. 3.

    Parviainen I, Uusaro A, Kälviäinen R, Kaukanen E, Mervaala E, Ruokonen E. High-dose thiopental in the treatment of refractory status epilepticus in intensive care unit. Neurology. 2002;59:1249–51.

    CAS Article Google Scholar

  4. 4.

    Winer JW, Rosenwasser RH, Jimenez F. Electroencephalographic activity and serum and cerebrospinal fluid pentobarbital levels in determining the therapeutic end point during barbiturate coma. Neurosurgery. 1991;29:739.

    CAS Article Google Scholar

  5. 5.

    Bührer M, Maitre PO, Hung OR, Ebling WF, Shafer SL, Stanski DR. Thiopental pharmacodynamics I. Defining the pseudo–steady-state serum concentration–EEG effect relationship. Anesthesiology. 1992;77:226–36.

    Article Google Scholar

  6. 6.

    Särkelä M, Mustola S, Seppänen T, Koskinen M, Lepola P, Suominen K, et al. Automatic analysis and monitoring of burst suppression in anesthesia. J Clin Monitor Comp. 2002;17:125–34.

    Article Google Scholar

Download references

Not applicable.

Not applicable.

Author notes
  1. Erika Dabricot and Inès Seqat have contributed equally to this work.

Affiliations

  1. Department of Neurological Anesthesiology and Intensive Care, Hospices Civils de Lyon, Hôpital Pierre Wertheimer, Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, Lyon, France

    Erika Dabricot, Frédéric Dailler & Baptiste Balança

  2. Department of Functional Neurology and Epileptology, Hospices Civils de Lyon and Lyon 1 University, Lyon, France

    Inès Seqat, Sylvain Rheims & Sebastien Boulogne

  3. Lyon’s Neuroscience Research Center, INSERM U1028/CNRS UMR 5292, Lyon 1 University, Lyon, France

    Sylvain Rheims, Sebastien Boulogne & Baptiste Balança

Authors
  1. Erika DabricotView author publications

    You can also search for this author in PubMed Google Scholar

  2. Inès SeqatView author publications

    You can also search for this author in PubMed Google Scholar

  3. Frédéric DaillerView author publications

    You can also search for this author in PubMed Google Scholar

  4. Sylvain RheimsView author publications

    You can also search for this author in PubMed Google Scholar

  5. Sebastien BoulogneView author publications

    You can also search for this author in PubMed Google Scholar

  6. Baptiste BalançaView author publications

    You can also search for this author in PubMed Google Scholar

Contributions

BB, ED, IS and SB conceived and design the study. ED collected the data from digital medical records. IS and SB reviewed electrophysiological data. BB analyzed the data. BB, ED, IS and SB interpreted the data. ED and BB draft the article. All authors critically revised the article. All authors approved the final version to be published.

Corresponding author

Correspondence to Baptiste Balança.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the French Intensive Care Society (No. IRB 00010254-2021-032).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

Verify currency and authenticity via CrossMark

Cite this article

Dabricot, E., Seqat, I., Dailler, F. et al. How to monitor thiopental administration in the intensive care unit for refectory status epilepticus or intracranial hypertension?. Crit Care 25, 439 (2021). https://doi.org/10.1186/s13054-021-03851-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13054-021-03851-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative



中文翻译:

如何监测重症监护病房中的硫喷妥钠给药是否存在食道性癫痫持续状态或颅内高压?

硫喷妥钠连续给药可用作难治性癫痫持续状态 (SE) 或颅内高压 (IH) 的抢救疗法。它诱导脑电图 (EEG) 减慢到爆发抑制状态。随后脑代谢需求和血流量的减少也可以降低颅内压 (ICP) [1]。连续给药通常以硫喷妥钠血清浓度为指导,以避免蓄积,以及对癫痫发作或 ICP 的疗效。硫喷妥钠的副作用(血流动力学功能障碍或免疫抑制)可在 30–70 mg/ml 的浓度下发生 [2, 3]。相反,血清浓度和疗效之间的关系不太可靠。在麻醉期间的健康受试者和脑损伤患者中,达到相同 EEG 变化所需的浓度存在很大差异 [4, 5],治疗范围和毒性范围之间存在重叠。EEG 信号的数字化可在床边提供定量指标,并可能允许在重症监护病房 (ICU) 中定制镇静剂给药。例如,抑制比 (SR) 提供了一种衡量全身麻醉期间镇静深度的指标 [5]。由于硫喷妥钠镇静的目标是达到不连续的 EEG 活动(即 SR ≥ 10%);本研究的目的是评估难治性 SE 或 IH 患者硫喷妥浓度与 SR 之间的关系。EEG 信号的数字化可在床边提供定量指标,并可能允许在重症监护病房 (ICU) 中定制镇静剂给药。例如,抑制比 (SR) 提供了一种衡量全身麻醉期间镇静深度的指标 [5]。由于硫喷妥钠镇静的目标是达到不连续的 EEG 活动(即 SR ≥ 10%);本研究的目的是评估难治性 SE 或 IH 患者硫喷妥浓度与 SR 之间的关系。EEG 信号的数字化可在床边提供定量指标,并可能允许在重症监护病房 (ICU) 中定制镇静剂给药。例如,抑制比 (SR) 提供了一种衡量全身麻醉期间镇静深度的指标 [5]。由于硫喷妥钠镇静的目标是达到不连续的 EEG 活动(即 SR ≥ 10%);本研究的目的是评估难治性 SE 或 IH 患者硫喷妥浓度与 SR 之间的关系。

我们对使用硫喷妥钠镇静并通过连续脑电图监测的成年患者进行了一项回顾性研究(2013-2020 年),该患者在里昂市民医院(法国)的神经 ICU 中进行。我们分析了血清测量周围 2 小时窗口的脑电图信号(前后 1 小时)。抑制周期由 EEG 幅度 < 10 µV ≥ 400 ms [6] 定义,并以最佳信号(Fz-Cz 或相邻;BRAIN-QUICK,Micromed)的中心推导的 2 s 时期计算。我们取了 2 小时的平均 SR。使用 R 软件(lme4 库)采用线性混合效应模型分析硫喷妥给药浓度和持续时间与 SR 之间的关系。用受试者工作特征曲线(ROC,pROC 库)分析硫喷妥钠浓度预测不连续 EEG 的诊断准确性。

我们纳入了 30 名患者,47% ( n  = 14/30) 患有难治性 SE。他们是 39.5 岁 [27.5–55.5],30% ( n  = 9) 是女性,37% 有强烈的硫喷妥钠副作用(败血症:n  = 5;血流动力学不稳定:n  = 6)。硫喷妥钠(n  = 95 个样品)的中位浓度为 16.5 mg/ml [8.5–23.1],中位给药率为 2.1 mg/kg/h [1.3–2.9]。在采血时,45.3% ( n = 43/95)的脑电图不连续,具有异质 SR 衰减时间(图 1)。74% 的 SE 患者的 EEG 没有癫痫放电,68% 的 IH 患者的 ICP < 25 mmHg。ICP值与硫喷妥浓度没有显着相关性。硫喷妥钠浓度和 SR 之间存在显着关联,这不依赖于适应症(SE 或 IH)。然而,对于给定的硫喷妥浓度,SR 水平变化很大,并且硫喷妥浓度不能预测不连续的 EEG(ROC 的 AUC = 0.59 95%CI [0.47; 0.71],图 2)。20 名患者还使用了其他镇静剂,但对 SR 没有显着影响;他们的退出导致 4 个病例的 SR 下降。

图。1
图1

血液采样时间周围 2 小时内抑制比 (SR) 变化的示例。三个不同的 SR 变化示例以蓝色绘制。前两条曲线显示同一患者持续输注咪达唑仑的 SR 相似,而硫喷妥钠浓度的变化比为 3。另一名未使用咪达唑仑的患者的最后一条曲线显示不同的 SR 衰减,而硫喷妥钠浓度与前者相当的第二条曲线。下图使用三个双极推导(右:C4-T4,中线:Fz-Cz,左:C3-T3)显示了下 SR 曲线的三个原始 EEG 样本(箭头 A、B 和 C),参见左)带有一个 0.53 Hz 高通滤波器和一个 80 Hz 低通滤波器

全尺寸图片
图 2
图2

抑制比与硫喷妥钠血药浓度的关系。A硫喷妥钠血清浓度在给药前十天发生变化。点颜色表示采样时的抑制比(色标在B面板上)。B硫喷妥钠血清浓度的采血时间周围的 2 h EEG 时间窗口的平均抑制率(x轴)。虚线表示线性回归模型的斜率(估计 = 0.65 95%CI [0.09;1.21],p  = 0.02)。C硫喷妥钠血清浓度的受试者工作特征曲线预测 SR ≥ 10% (AUC = 0.59 95% CI [0.47;0.71])

全尺寸图片

本研究的主要局限在于其回顾性设计。鉴于给定硫喷妥给药的脑电图变化的异质性,我们认为在使用巴比妥类药物达到不连续活动时进行连续的 SR 监测。同时监测电生理数据和血清浓度可能有助于调整个体给药并监测硫喷妥钠对大脑活动的影响。这种策略需要在前瞻性试验中进行评估。

当前研究期间使用的数据集可根据合理要求从相应作者处获得。

  1. 1.

    Russo H, Bressolle F. 硫喷妥钠的药效学和药代动力学。临床药代动力学。1998;35:95–134。

    CAS 文章 谷歌学术

  2. 2.

    Huynh F, Mabasa VH, Ensom MHH。批判性评论:硫喷妥钠持续输注是否需要在重症监护人群中进行治疗药物监测?药物监测。2009;31:153–69。

    CAS 文章 谷歌学术

  3. 3.

    Parviainen I、Uusaro A、Kälviäinen R、Kaukanen E、Mervaala E、Ruokonen E. 高剂量硫喷妥钠治疗重症监护病房难治性癫痫持续状态。神经病学。2002;59:1249–51。

    CAS 文章 谷歌学术

  4. 4.

    Winer JW、Rosenwasser RH、Jimenez F. 脑电图活动以及血清和脑脊液戊巴比妥水平在确定巴比妥类昏迷期间的治疗终点时。神经外科。1991;29:739。

    CAS 文章 谷歌学术

  5. 5.

    Bührer M, Maitre PO, Hung OR, Ebling WF, Shafer SL, Stanski DR. 硫喷妥钠药效学 I. 定义假稳态血清浓度-脑电图效应关系。麻醉学。1992;77:226-36。

    文章谷歌学术

  6. 6.

    Särkelä M、Mustola S、Seppänen T、Koskinen M、Lepola P、Suominen K 等。麻醉中爆发抑制的自动分析和监测。J临床监视器比较。2002;17:125-34。

    文章谷歌学术

下载参考资料

不适用。

不适用。

作者笔记
  1. Erika Dabricot 和 Inès Seqat 对这项工作做出了同样的贡献。

隶属关系

  1. 神经麻醉学和重症监护部,Hospices Civils de Lyon, Hôpital Pierre Wertheimer, Groupement Hospitalier Est, 59 Boulevard Pinel, 69500, Bron, Lyon, France

    Erika Dabricot、Frédéric Dailler 和 Baptiste Balança

  2. 功能性神经病学和癫痫学系,Hospices Civils de Lyon 和 Lyon 1 大学,法国里昂

    Inès Seqat、Sylvain Rheims 和 Sebastien Boulogne

  3. 里昂神经科学研究中心,INSERM U1028/CNRS UMR 5292,里昂第一大学,法国里昂

    西尔万·兰斯、塞巴斯蒂安·布洛涅和巴蒂斯特·巴兰萨

作者
  1. Erika Dabricot查看作者的出版物

    您也可以在PubMed  Google Scholar中搜索该作者

  2. Inès Seqat查看作者的出版物

    您也可以在PubMed  Google Scholar中搜索该作者

  3. Frédéric Dailler查看作者的出版物

    您也可以在PubMed  Google Scholar中搜索该作者

  4. Sylvain Rheims查看作者的出版物

    您也可以在PubMed  Google Scholar中搜索该作者

  5. 塞巴斯蒂安·布洛涅查看作者的出版物

    您也可以在PubMed  Google Scholar中搜索该作者

  6. Baptiste Balança查看作者的出版物

    您也可以在PubMed  Google Scholar中搜索该作者

贡献

BB、ED、IS 和 SB 构思并设计了这项研究。ED 从数字医疗记录中收集数据。IS 和 SB 审查了电生理数据。BB 分析了数据。BB、ED、IS 和 SB 对数据进行了解释。ED 和 BB 起草文章。所有作者都对文章进行了批判性修改。所有作者都批准了最终版本的出版。

通讯作者

给巴蒂斯特·巴兰萨的信函。

伦理批准和同意参与

该研究得到了法国重症监护协会伦理委员会的批准(编号 IRB 00010254-2021-032)。

同意发表

不适用。

利益争夺

作者声明他们没有相互竞争的利益。

出版商注

Springer Nature 对出版地图和机构附属机构的管辖权主张保持中立。

开放存取本文根据知识共享署名 4.0 国际许可进行许可,该许可允许以任何媒介或格式使用、共享、改编、分发和复制,只要您对原作者和来源给予适当的信任,并提供链接到知识共享许可,并说明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的信用额度中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不受法律法规的允许或超出允许的用途,您将需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。

转载和许可

通过 CrossMark 验证货币和真实性

引用这篇文章

Dabricot, E., Seqat, I., Dailler, F.等。如何监测重症监护室中的硫喷妥钠给药情况是否存在食道性癫痫持续状态或颅内高压?重症监护 25, 439 (2021)。https://doi.org/10.1186/s13054-021-03851-8

下载引文

  • 收到

  • 接受

  • 发表

  • DOI https ://doi.org/10.1186/s13054-021-03851-8

分享这篇文章

与您共享以下链接的任何人都可以阅读此内容:

抱歉,本文目前没有可共享的链接。

由 Springer Nature SharedIt 内容共享计划提供

更新日期:2021-12-17
down
wechat
bug