当前位置: X-MOL 学术Chem. Eng. Res. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Demonstration of applied linear model predictive control for an enzymatic reactive dividing wall column
Chemical Engineering Research and Design ( IF 3.9 ) Pub Date : 2021-12-09 , DOI: 10.1016/j.cherd.2021.12.008
Anna Sophia Horsch 1 , Dennis Hamann 1 , Lisa Sophie Egger 1 , Georg Fieg 1 , Mirko Skiborowski 1
Affiliation  

The synergistic integration of different processing steps in multifunctional units offers huge potential for bioprocess intensification. Especially reactive separation technologies have been widely applied in chemical processes, with reactive distillation being termed the front-runner of industrial process intensification. The concept can be transferred to bioprocesses in terms of enzymatic reactive distillation, which can further be intensified through thermal coupling with a subsequent distillation column into an enzymatic reactive dividing wall column. While such a highly integrated process offers considerable potential for operational and investment cost savings, it also faces operational challenges and limitations caused by the strong degree of integration and the temperature sensitivity of the biocatalyst, that need to be addressed by a sophisticated process control system. The current study demonstrates the applicability and efficiency of a linear model predictive control approach for the enzymatic reactive dividing wall column in a pilot plant application. The transesterification of butanol and hexyl acetate to hexanol and butyl acetate, catalyzed by the enzyme CalB (Novozym 435), serves as a model reaction. The control performance is illustrated for a setpoint adjustment and a feed disturbance, for which a comparative evaluation with an established PI-control approach is conducted.



中文翻译:

酶促反应分隔壁塔应用线性模型预测控制的演示

多功能单元中不同加工步骤的协同集成为生物过程强化提供了巨大的潜力。特别是反应分离技术在化工过程中得到了广泛的应用,反应精馏被称为工业过程强化的领跑者。这个概念可以转移到酶促反应蒸馏方面的生物过程,可以通过与后续蒸馏塔热耦合进入酶促反应分隔壁塔进一步强化。虽然这种高度集成的过程为节省运营和投资成本提​​供了相当大的潜力,但它也面临着由生物催化剂的高度集成和温度敏感性引起的运营挑战和限制,这需要通过复杂的过程控制系统来解决。目前的研究证明了线性模型预测控制方法在中试工厂应用中酶反应性分隔壁塔的适用性和效率。由酶 CalB (Novozym 435) 催化的丁醇和乙酸己酯酯交换为己醇和乙酸丁酯,用作模型反应。说明了设定点调整和进料扰动的控制性能,并与已建立的 PI 控制方法进行了比较评估。由酶 CalB (Novozym 435) 催化的丁醇和乙酸己酯酯交换为己醇和乙酸丁酯,用作模型反应。说明了设定点调整和进料扰动的控制性能,并与已建立的 PI 控制方法进行了比较评估。由酶 CalB (Novozym 435) 催化的丁醇和乙酸己酯酯交换为己醇和乙酸丁酯,用作模型反应。说明了设定点调整和进料扰动的控制性能,并与已建立的 PI 控制方法进行了比较评估。

更新日期:2021-12-30
down
wechat
bug