当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A hollow microlattice based ultralight active thermal control device and its fabrication techniques and thermal performances
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2021-12-10 , DOI: 10.1088/1361-6439/ac3be2
Wenjun Xu 1 , Longquan Liu 1 , Junming Chen 1 , Xinying Lv 1 , Yongtao Yao 2
Affiliation  

This paper introduces a new thermal control device (TCD) which has not only low weight and high efficiency but also passive and active cooling capabilities. The TCD mainly consists of hollow graphene-enhanced-metallic microlattice material, phase change material (PCM) and a peristatic pump. The PCM is inside the spatial-interconnected millimeter-scale diameter tubes, which are the basic constitution of the hollow microlattice material, in addition, the peristatic pump was connected with the tubes and used to force the liquid-state PCM to circulate inside the interconnected thin tubes. Thus, the proposed TCD takes combined advantages of the ultralight and high thermal transfer properties of the hollow graphene-enhanced-metallic microlattice materials, the thermal storage capability of the PCM and forced convection of the PCM driven by the peristatic pump as the PCM is in liquid state. The manufacturing process of the active TCD was also developed and proposed, which mainly includes additive manufacturing, composite electroless plating, polymer etching, liquid PCM injecting and the peristatic pump connecting. In addition to that, a thermal test system was built and the effective thermal conductivities of the TCD in passive cooling and with active cooling modes were experimentally studied. The TCD can absorb heat and actively dissipate heat by means of forced convection. Consequently, the proposed active TCD can be used to guarantee the electronic components and spacecrafts operate in a specific temperature range.

中文翻译:

一种基于中空微晶格的超轻主动热控器件及其制备技术和热性能

本文介绍了一种新型热控制装置(TCD),它不仅重量轻、效率高,而且具有被动和主动冷却能力。TCD主要由中空石墨烯增强金属微晶格材料、相变材料(PCM)和蠕动泵组成。PCM在空间互连的毫米级直径管内,这是中空微晶格材料的基本构成,此外,蠕动泵与管连接,用于迫使液态PCM在互连的内部循环细管。因此,所提出的 TCD 结合了中空石墨烯增强金属微晶格材料的超轻和高热传递特性,PCM的蓄热能力和PCM在液态时由蠕动泵驱动的强制对流。还开发并提出了有源TCD的制造工艺,主要包括增材制造、复合化学镀、聚合物蚀刻、液体PCM注入和蠕动泵连接。除此之外,还建立了一个热测试系统,并对被动冷却和主动冷却模式下TCD的有效导热率进行了实验研究。TCD可以通过强制对流的方式吸热和主动散热。因此,所提出的有源 TCD 可用于保证电子元件和航天器在特定温度范围内运行。还开发并提出了有源TCD的制造工艺,主要包括增材制造、复合化学镀、聚合物蚀刻、液体PCM注入和蠕动泵连接。除此之外,还建立了一个热测试系统,并对被动冷却和主动冷却模式下TCD的有效导热率进行了实验研究。TCD可以通过强制对流的方式吸热和主动散热。因此,所提出的有源 TCD 可用于保证电子元件和航天器在特定温度范围内运行。还开发并提出了有源TCD的制造工艺,主要包括增材制造、复合化学镀、聚合物蚀刻、液体PCM注入和蠕动泵连接。除此之外,还建立了一个热测试系统,并对被动冷却和主动冷却模式下TCD的有效导热率进行了实验研究。TCD可以通过强制对流的方式吸热和主动散热。因此,所提出的有源 TCD 可用于保证电子元件和航天器在特定温度范围内运行。建立了热测试系统,并实验研究了TCD在被动冷却和主动冷却模式下的有效热导率。TCD可以通过强制对流的方式吸热和主动散热。因此,所提出的有源 TCD 可用于保证电子元件和航天器在特定温度范围内运行。建立了热测试系统,并实验研究了TCD在被动冷却和主动冷却模式下的有效导热率。TCD可以通过强制对流的方式吸热和主动散热。因此,所提出的有源 TCD 可用于保证电子元件和航天器在特定温度范围内运行。
更新日期:2021-12-10
down
wechat
bug