当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering living and regenerative fungal–bacterial biocomposite structures
Nature Materials ( IF 41.2 ) Pub Date : 2021-12-02 , DOI: 10.1038/s41563-021-01123-y
Ross M McBee 1, 2 , Matt Lucht 3 , Nikita Mukhitov 4 , Miles Richardson 2, 5 , Tarun Srinivasan 1 , Dechuan Meng 4 , Haorong Chen 4 , Andrew Kaufman 2 , Max Reitman 3 , Christian Munck 2 , Damen Schaak 3 , Christopher Voigt 4 , Harris H Wang 2, 6
Affiliation  

Engineered living materials could have the capacity to self-repair and self-replicate, sense local and distant disturbances in their environment, and respond with functionalities for reporting, actuation or remediation. However, few engineered living materials are capable of both responsivity and use in macroscopic structures. Here we describe the development, characterization and engineering of a fungal–bacterial biocomposite grown on lignocellulosic feedstocks that can form mouldable, foldable and regenerative living structures. We have developed strategies to make human-scale biocomposite structures using mould-based and origami-inspired growth and assembly paradigms. Microbiome profiling of the biocomposite over multiple generations enabled the identification of a dominant bacterial component, Pantoea agglomerans, which was further isolated and developed into a new chassis. We introduced engineered P. agglomerans into native feedstocks to yield living blocks with new biosynthetic and sensing–reporting capabilities. Bioprospecting the native microbiota to develop engineerable chassis constitutes an important strategy to facilitate the development of living biomaterials with new properties and functionalities.



中文翻译:

工程化活体和再生真菌-细菌生物复合结构

工程化生物材料可能具有自我修复和自我复制的能力,能够感知环境中局部和远处的干扰,并以报告、驱动或修复的功能做出响应。然而,很少有工程生物材料能够同时具有响应性和在宏观结构中的用途。在这里,我们描述了一种在木质纤维素原料上生长的真菌-细菌生物复合材料的开发、表征和工程设计,这种复合材料可以形成可塑、可折叠和可再生的生命结构。我们已经制定了策略,使用基于模具和折纸启发的生长和组装范例来制造人类规模的生物复合结构。多代生物复合材料的微生物组分析能够鉴定出一种主要的细菌成分,Pantoea agglomerans,它被进一步分离并发展成一个新的底盘。我们将经过工程改造的P. agglomerans引入本地原料中,以产生具有新的生物合成和传感报告能力的活块。对天然微生物群进行生物勘探以开发可工程底盘是促进开发具有新特性和功能的活生物材料的重要策略。

更新日期:2021-12-02
down
wechat
bug