当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sugar-disguised bullets for combating multidrug-resistant bacteria infections based on an oxygen vacancy-engineered glucose-functionalized MoO3-x photo-coordinated bienzyme
Chemical Engineering Journal ( IF 15.1 ) Pub Date : 2021-12-02 , DOI: 10.1016/j.cej.2021.133943
Aihua Li 1 , Meng Zhang 1 , Weishuai Ma 1 , Danxia Li 2 , Yuanhong Xu 1, 2
Affiliation  

Molybdenum trioxide (MoO3) as an artificial enzyme has attracted extensive attention owing to its striking merits. However, it still faces the challenges in poor catalytic activity or low production yield which could be addressed through rational structure design and mechanism elucidation. Herein, a glucose-functionalized oxygen vacancy-enriched molybdenum oxide (G-MoO3-x) is prepared via an environmentally friendly, mass-production and low-temperature hydrothermal method. The G-MoO3-x exhibits excellent bienzyme-like (oxidase and peroxidase) activities and outstanding photothermal conversion capacity (∼45.98%). Systematic studies reveal that oxygen vacancy is the determining factor for both enzyme-like activity and photothermal effect of G-MoO3-x, and the peroxidase-like activity is positively correlated with oxygen vacancy concentration. Density functional theory (DFT) calculations indicate that the oxygen (O)-defect MoO3 has a more favorable impact on peroxidase-like activity than MoO3 edge. Through all-in-one synergistic effects, G-MoO3-x nanozyme exhibits significant broad-spectrum antibacterial properties against β-lactamase-producing Escherichia coli and methicillin-resistant Staphylococcus aureus as well as its biofilm.



中文翻译:

基于氧空位工程葡萄糖功能化MoO3-x光配位双酶的糖伪装子弹用于对抗多重耐药菌感染

三氧化钼(MoO 3)作为一种人工酶因其显着的优点而受到广泛关注。然而,它仍然面临催化活性差或产率低的挑战,可以通过合理的结构设计和机理阐明来解决。在此,通过环境友好、大规模生产和低温水热法制备了葡萄糖功能化的富氧空位氧化钼(G-MoO 3-x)。G-MoO 3-x表现出优异的类双酶(氧化酶和过氧化物酶)活性和出色的光热转换能力(~45.98%)。系统研究表明氧空位是 G-MoO 类酶活性和光热效应的决定因素3-x,并且过氧化物酶样活性与氧空位浓度呈正相关。密度泛函理论 (DFT) 计算表明,氧 (O) 缺陷 MoO 3对过氧化物酶样活性的影响比 MoO 3边缘更有利。通过多合一的协同作用,G-MoO 3-x纳米酶对产β-内酰胺酶的大肠杆菌和耐甲氧西林的金黄色葡萄球菌及其生物膜表现出显着的广谱抗菌特性。

更新日期:2021-12-10
down
wechat
bug