当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling the reaction mechanism of an Sb2S3–Co9S8/NC anode for high-performance lithium-ion batteries
Nanoscale ( IF 6.7 ) Pub Date : 2021-11-18 , DOI: 10.1039/d1nr06069d
Guanxia Ke 1 , Xiaochao Wu 1 , Huanhui Chen 1, 2 , Wanqing Li 1 , Shuang Fan 1 , Hongwei Mi 1 , Yongliang Li 1 , Qianling Zhang 1 , Chuanxin He 1 , Xiangzhong Ren 1
Affiliation  

Metal sulfides are promising lithium-ion battery anode materials with high specific capacities, but there has been little in-depth discussion on the reaction mechanism of metal sulfides. In this study, a robust bimetallic sulfide heterogeneous material (Sb2S3–Co9S8/NC) based on a metal–organic framework was designed. The combination of in situ X-ray diffraction and ex situ transmission electron microscopy revealed the phase evolution behavior during the first cycle. During the lithiation process, Sb2S3 undergoes lithium insertion, conversion and alloying reactions to form crystalline Li2S, Li3Sb and metallic Sb. Co9S8 undergoes lithium insertion and transformation to form metallic Co and Li2S. Lithium ions are extracted from the nanocrystalline phase and transformed into the original Sb2S3 and Co9S8 phases. The Sb2S3–Co9S8/NC anode exhibits excellent cycle stability (616 mA h g−1 at 2 A g−1 after 900 cycles) and fast lithium ion transfer kinetics. These results demonstrate the lithiation/delithiation mechanism of the Sb2S3-based anode and provide a new path for the development of high-performance LIB anodes based on bimetallic sulfides.

中文翻译:

揭示用于高性能锂离子电池的 Sb2S3–Co9S8/NC 负极的反应机理

金属硫化物是具有高比容量的有前途的锂离子电池负极材料,但对金属硫化物的反应机理鲜有深入探讨。在本研究中,设计了一种基于金属-有机骨架的坚固的双金属硫化物异质材料(Sb 2 S 3 –Co 9 S 8 /NC)。的组合原位X射线衍射和易地透射电子显微镜显示在第一周期期间的相位演化行为。在锂化过程中,Sb 2 S 3经历锂嵌入、转化和合金化反应,形成结晶的 Li 2 S、Li 3Sb 和金属 Sb。Co 9 S 8经历锂嵌入和转变以形成金属Co和Li 2 S。锂离子从纳米晶相中提取并转变为原始的Sb 2 S 3和Co 9 S 8相。Sb 2 S 3 –Co 9 S 8 /NC 阳极表现出优异的循环稳定性(900 次循环后在 2 A g -1 下为616 mA hg -1)和快速的锂离子转移动力学。这些结果证明了 Sb 2 S 3的锂化/脱锂机制为基于双金属硫化物的高性能锂离子电池负极的开发提供了新的途径。
更新日期:2021-11-29
down
wechat
bug