当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A multiphysics model of magnetic hydrogel under a moving magnet for targeted drug delivery
International Journal of Mechanical Sciences ( IF 7.3 ) Pub Date : 2021-11-28 , DOI: 10.1016/j.ijmecsci.2021.106963
Qimin Liu 1 , Xin Ye 2 , Hangyu Wu 1 , Xingyu Zhang 3
Affiliation  

A remarkable characteristics of magnetic hydrogel is its ability to dramatically alter its morphology and location in a remote way. Herein, a three-dimensional (3D) multiphysics model is presented to study the motion and deformation of the drug-loaded magnetic hydrogel in a moving fluid under an varying magnetic field created by a moving magnet. The magneto-chemo-hydro-mechanical model allows for nonlinear finite deformation, and the governing equations are formulated by balances of mass and forces. The constitutive relations are achieved via the second law of thermodynamics. In particular, the fluid-structure interaction is considered between the magnetic hydrogel and its surrounding fluid. After validation with theoretical works, the movable and deformable behaviors of the magnetic hydrogel are then studied under varying magnetic velocity, hydrogel radius, magnetic field strength, and fluid flow velocity. Results show that the slower moving magnet, the larger hydrogel radius and the flow velocity can shorten the time for the hydrogel to reach the channel outlet. In addition, the magnetic targeting system is obtained for transporting the drug-loaded hydrogel to the specific site through controlling the magnet velocity and the maximum magnetic field strength. The present multiphysics model may provide theoretical guidance in design and optimization of magnetic hydrogel-based drug targeting system.



中文翻译:

用于靶向给药的移动磁铁下磁性水凝胶的多物理场模型

磁性水凝胶的一个显着特点是它能够以远程方式显着改变其形态和位置。在此,提出了一个三维 (3D) 多物理场模型来研究载药磁性水凝胶在移动磁体产生的变化磁场下在移动流体中的运动和变形。磁化学流体力学模型允许非线性有限变形,并且控制方程是通过质量和力的平衡来制定的。本构关系是通过热力学第二定律实现的。特别地,考虑了磁性水凝胶与其周围流体之间的流固耦合。在与理论工作验证后,然后研究磁性水凝胶在不同磁速度下的可移动和可变形行为,水凝胶半径、磁场强度和流体流速。结果表明,移动速度较慢的磁铁、较大的水凝胶半径和流速可以缩短水凝胶到达通道出口的时间。此外,通过控制磁体速度和最大磁场强度,获得了将载药水凝胶运输到特定位点的磁性靶向系统。该多物理场模型可为基于磁性水凝胶的药物靶向系统的设计和优化提供理论指导。通过控制磁体速度和最大磁场强度,获得将载药水凝胶输送到特定位点的磁性靶向系统。该多物理场模型可为基于磁性水凝胶的药物靶向系统的设计和优化提供理论指导。通过控制磁体速度和最大磁场强度,获得将载药水凝胶输送到特定位点的磁性靶向系统。该多物理场模型可为基于磁性水凝胶的药物靶向系统的设计和优化提供理论指导。

更新日期:2021-11-28
down
wechat
bug