当前位置: X-MOL 学术J. Micromech. Microeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A resonant high-pressure sensor based on dual cavities
Journal of Micromechanics and Microengineering ( IF 2.3 ) Pub Date : 2021-11-16 , DOI: 10.1088/1361-6439/ac333d
Jie Yu 1, 2 , Yulan Lu 1 , Deyong Chen 1, 2 , Junbo Wang 1, 2 , Jian Chen 1, 2 , Bo Xie 1
Affiliation  

High-pressure sensors enable expansive demands in ocean sciences, industrial controls, and oil explorations. Successful sensor realized in piezoresistive high-pressure sensors which suffer from the key issue of compromised accuracies due to serious temperature drifts. Herein, this paper presents a high accuracy resonant high-pressure sensor with the pressure range of 70 MPa. Different from conventional resonant high-pressure sensor, the developed sensor utilized a dual-resonator-cavity design to minimize temperature disturbances and improve the pressure sensitivities. Besides, four circle cavities were used to maintain a high vacuum level for resonators after anodic bonding process. In details, Dual resonators, which is parallelly placed in the tensile and compressive stresses areas of a rectangular pressure sensitive diaphragm, are separated vacuum-packaged in the parallel dual cavities. Thus, pressure under measurement bends the pressure sensitive diaphragm, producing an increased pressure sensitivity and a decreased temperature sensitivity by the differential outputs of the dual resonators. Parameterized mathematical models of the sensor were established and the parameters of the models were optimized to adjust the pressure sensitivities and the temperature sensitivities of the sensor. Simplified deep reactive ion etching was used to form the sensing structure of the sensor and only once anodic bonding was used to form vacuum packaging for the dual resonators. Experimental results confirmed that the Q values of the resonators were higher than 32 000. Besides, the temperature sensitivity of the sensor was reduced from 44 Hz C−1 (494 ppm C−1) to 1 Hz C−1 (11 ppm C−1) by the differential outputs of the dual resonators in the temperature range of −10 C–60 C under the pressure of 1000 kPa. In addition, the accuracy of the sensor was better than 0.02% FS within the pressure range of 110–6500 kPa and the temperature range of −10 C–60 C by using a polynomial algorithm.



中文翻译:

基于双腔的谐振高压传感器

高压传感器满足海洋科学、工业控制和石油勘探领域的广泛需求。在压阻式高压传感器中实现的成功传感器由于严重的温度漂移而导致精度受损的关键问题。在此,本文提出了一种压力范围为 70 MPa 的高精度谐振高压传感器。与传统的谐振高压传感器不同,开发的传感器采用双谐振腔设计,以最大限度地减少温度干扰并提高压力灵敏度。此外,四个圆形腔用于在阳极键合工艺后保持谐振器的高真空水平。详细地说,双谐振器平行放置在矩形压敏膜片的拉伸和压缩应力区域,独立真空包装在平行的双腔中。因此,测量下的压力使压敏隔膜弯曲,通过双谐振器的差分输出产生增加的压力敏感性和降低的温度敏感性。建立了传感器的参数化数学模型,优化模型参数以调节传感器的压力灵敏度和温度灵敏度。使用简化的深度反应离子蚀刻来形成传感器的传感结构,并且仅使用一次阳极键合来形成双谐振器的真空封装。实验结果证实,通过双谐振器的差分输出产生增加的压力敏感性和降低的温度敏感性。建立了传感器的参数化数学模型,优化模型参数以调节传感器的压力灵敏度和温度灵敏度。使用简化的深度反应离子蚀刻来形成传感器的传感结构,并且仅使用一次阳极键合来形成双谐振器的真空封装。实验结果证实,通过双谐振器的差分输出产生增加的压力敏感性和降低的温度敏感性。建立了传感器的参数化数学模型,优化模型参数以调节传感器的压力灵敏度和温度灵敏度。使用简化的深度反应离子蚀刻来形成传感器的传感结构,并且仅使用一次阳极键合来形成双谐振器的真空封装。实验结果证实,使用简化的深度反应离子蚀刻来形成传感器的传感结构,并且仅使用一次阳极键合来形成双谐振器的真空封装。实验结果证实,使用简化的深度反应离子蚀刻来形成传感器的传感结构,并且仅使用一次阳极键合来形成双谐振器的真空封装。实验结果证实,谐振器的Q值高于 32 000。此外,传感器的温度灵敏度从 44 Hz C -1 (494 ppm C -1 ) 降低到 1 Hz C -1 (11 ppm C -1 ) 通过微分双谐振器在-10 C-60 C温度范围内在1000 kPa压力下的输出。此外,通过使用多项式算法,传感器在110-6500 kPa压力范围和-10 C-60 C温度范围内的精度优于0.02% FS。

更新日期:2021-11-16
down
wechat
bug