当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic, Mechanically Interlocked Porphyrin–Carbon Nanotubes for Quantum Computation and Spintronics
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2021-11-26 , DOI: 10.1021/jacs.1c07058
Sara Moreno-Da Silva 1 , Jesús I Martínez 2 , Aysegul Develioglu 1 , Belén Nieto-Ortega 1 , Leire de Juan-Fernández 1 , Luisa Ruiz-Gonzalez 3 , Antonio Picón 4 , Soléne Oberli 4 , Pablo J Alonso 2 , Dooshaye Moonshiram 1 , Emilio M Pérez 1 , Enrique Burzurí 1, 5
Affiliation  

Atomic-scale reproducibility and tunability endorse magnetic molecules as candidates for spin qubits and spintronics. A major challenge is to implant those molecular spins into circuit geometries that may allow one, two, or a few spins to be addressed in a controlled way. Here, the formation of mechanically bonded, magnetic porphyrin dimeric rings around carbon nanotubes (mMINTs) is presented. The mechanical bond places the porphyrin magnetic cores in close contact with the carbon nanotube without disturbing their structures. A combination of spectroscopic techniques shows that the magnetic geometry of the dimers is preserved upon formation of the macrocycle and the mMINT. Moreover, the metallic core selection determines the spin location in the mMINT. The suitability of mMINTs as qubits is explored by measuring their quantum coherence times (Tm). Formation of the dimeric ring preserves the Tm found in the monomer, which remains in the μs scale for mMINTs. The carbon nanotube is used as vessel to place the molecules in complex circuits. This strategy can be extended to other families of magnetic molecules. The size and composition of the macrocycle can be tailored to modulate magnetic interactions between the cores and to introduce magnetic asymmetries (heterometallic dimers) for more complex molecule-based qubits.

中文翻译:

用于量子计算和自旋电子学的磁性机械互锁卟啉-碳纳米管

原子尺度的再现性和可调性支持磁性分子作为自旋量子位和自旋电子学的候选者。一个主要的挑战是将这些分子自旋植入电路几何结构中,这可能允许以受控方式处理一个、两个或几个自旋。在这里,介绍了在碳纳米管 (mMINT) 周围形成机械结合的磁性卟啉二聚环。机械结合使卟啉磁芯与碳纳米管紧密接触,而不会干扰它们的结构。光谱技术的组合表明,二聚体的磁性几何形状在大环和 mMINT 形成后得以保留。此外,金属核的选择决定了 mMINT 中的自旋位置。通过测量它们的量子相干时间来探索 mMINT 作为量子位的适用性(Ť)。二聚环的形成保留了在单体中发现的T m,对于 mMINT,其保持在 μs 尺度。碳纳米管被用作将分子放置在复杂电路中的容器。这种策略可以扩展到其他磁性分子家族。大环的大小和组成可以调整以调节核心之间的磁相互作用,并为更复杂的基于分子的量子位引入磁不对称性(异金属二聚体)。
更新日期:2021-12-22
down
wechat
bug