当前位置: X-MOL 学术J. Hazard. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced degradation of micropollutants over iron-based electro-Fenton catalyst: Cobalt as an electron modulator in mesochannels and mechanism insight
Journal of Hazardous Materials ( IF 13.6 ) Pub Date : 2021-11-26 , DOI: 10.1016/j.jhazmat.2021.127896
Xiaoqian Chen 1 , Wei Teng 1 , Jianwei Fan 1 , Yanyan Chen 1 , Qian Ma 1 , Yinghao Xue 1 , Chuning Zhang 1 , Wei-Xian Zhang 1
Affiliation  

Heterogeneous electro-Fenton (hetero-EF) process is an emerging alternative for effective oxidation of recalcitrant micropollutants, but it is hampered by limited hydroxyl radical (•OH) generation and low stability on the iron-based cathodes. Herein, we demonstrate an enhanced hetero-EF performance via modulation of iron electronic structure in an ordered mesoporous carbon (OMC). By tuning the cobalt incorporation, the highly-dispersed iron-cobalt (FeCo) nanoalloys in mesochannels (Fe0.5Co0.5@OMC) show a 3-fold increase in •OH yield compared with Fe@OMC, achieving degradation efficiency with 92% of sulfamethazine (SMT) and 99% of rhodamine B (RhB), and the corresponding total organic carbon (TOC) removal with 66% of SMT and 85% of RhB within 2 h in neutral pH, respectively. Experimental results and density functional theory (DFT) calculations demonstrate that iron incorporated with cobalt reduces energy barrier for facile generation of H2O2 and •OH from O2 through direct electron transfer, along with decreased overpotential. Meanwhile, cobalt doping promotes H2O2 decomposition by accelerated Fe(II)/Fe(III) cycle and Co(II)/Co(III) redox. Furthermore, spatially confined and half-embedded structure endows the nanocatalyst (8 nm) excellent durability within a wide pH value range and good stability in cycle tests. A plausible reaction mechanism and degradation pathway for SMT are proposed. Moreover, the superiority of Fe0.5Co0.5@OMC cathode is maintained in simulated wastewater, suggesting an enormous potential in practical wastewater treatment.



中文翻译:

铁基电芬顿催化剂对微污染物的降解增强:钴作为介孔通道中的电子调节剂和机理洞察

非均相电芬顿 (hetero-EF) 工艺是有效氧化顽固性微污染物的新兴替代方法,但它受到羟基自由基 (•OH) 生成有限和铁基阴极稳定性低的阻碍。在此,我们通过在有序介孔碳 (OMC) 中调节铁电子结构来展示增强的异质 EF 性能。通过调整钴的掺入量,与 Fe@OMC 相比,中通道中高度分散的铁钴 (FeCo) 纳米合金 (Fe 0.5 Co 0.5 @OMC) 的 •OH 产率提高了 3 倍,降解效率达到 92%磺胺二甲嘧啶 (SMT) 和 99% 的罗丹明 B (RhB),以及相应的总有机碳 (TOC) 去除率,其中 66% 的 SMT 和 85% 的 RhB 在 2 内 h 分别在中性 pH 值下。实验结果和密度泛函理论 (DFT) 计算表明,铁与钴的结合降低了能垒,从而通过直接电子转移从 O 2轻松生成 H 2 O 2和•OH ,同时降低了过电势。同时,钴掺杂通过加速Fe(II)/Fe(III)循环和Co(II)/Co(III)氧化还原来促进H 2 O 2分解。此外,空间受限和半嵌入结构使纳米催化剂(8 nm)在较宽的 pH 值范围内具有出色的耐久性,并在循环测试中具有良好的稳定性。提出了一种合理的 SMT 反应机理和降解途径。而且,Fe 0.5的优越性 Co 0.5 @OMC 阴极保留在模拟废水中,表明在实际废水处理中具有巨大潜力。

更新日期:2021-11-26
down
wechat
bug