当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principle predictions of the electric and thermal transport performance on high-temperature thermoelectric semiconductor MnTe2
Journal of Alloys and Compounds ( IF 6.2 ) Pub Date : 2021-11-24 , DOI: 10.1016/j.jallcom.2021.162813
Haoqin Ma 1 , Houjiang Yang 1 , Xiaolian Zhang 1 , Bo Duan 1, 2 , Wenjuan Li 1 , Pengcheng Zhai 1, 2 , Guodong Li 1, 2
Affiliation  

Antiferromagnetic pyrite compound MnTe2 is a newly discovered high-performance thermoelectric material. However, its electric and thermal transport performance remained unexplored so far. In this work, the first-principle calculations based on the density functional theory were applied to predict the electric and thermal transport performance of MnTe2. The band structures showed that Te atoms dominate the band energies near the fermi level. The calculated electric transport performance of MnTe2 from BoltzTraP2 package showed that n-type MnTe2 possesses a higher power factor than that of p-type in the carrier concentration range from 1019 to 1021 cm-3. The peak power factor with electronic relaxation time of n-type MnTe2 at 800 K is 3.05×1015 μW K-2 cm-1 s-1 at a lower carrier concentration of 0.78×1021 cm-3 while p-type is 2.18×1015 μW K-2 cm-1 s-1 at a higher carrier concentration of 1.35×1021 cm-3. It suggests that high-performance n-type doped MnTe2 is easier to be obtained experimentally. Due to the low average phonon velocity of 2064 m·s-1, MnTe2 has a low lattice thermal conductivity of 0.72 W m-1 K-1 at 800 K. The calculated charged point defect formation energy of several possible n-type doping elements showed that Y or La substituting Mn atom and Cl or Br substituting Te atom are the most possible n-type doping point defects. Combined with the optimal carrier concentration of 0.78×1021 cm-3 at 800 K, stoichiometric A0.07Mn0.93Te2 (A = Y, La) and MnTe1.93B0.07 (B = Cl, Br) are expected to possess high thermoelectric properties reaching the theoretical peak power factor with electronic relaxation time of 3.05×1015 μW K-2 cm-1 s-1 and the lattice thermal conductivity of 0.72 W m-1 K-1.



中文翻译:

高温热电半导体MnTe2电热传输性能的第一性原理预测

反铁磁黄铁矿化合物MnTe 2是一种新发现的高性能热电材料。然而,迄今为止,其电和热传输性能仍未得到探索。在这项工作中,基于密度泛函理论的第一性原理计算被应用于预测MnTe 2的电和热传输性能。能带结构表明,Te 原子在费米能级附近支配能带能量。BoltzTraP2 封装的 MnTe 2 的电输运性能计算表明,在载流子浓度范围为 10 19至 10 21 cm -3 时,n 型 MnTe 2具有比 p 型更高的功率因数. 在 0.78×10 21 cm -3的较低载流子浓度下,n 型 MnTe 2在 800  K 的电子弛豫时间峰值功率因数为 3.05×10 15 μW K -2 cm -1 s -1而 p 型为2.18×10 15 μW K -2 cm -1 s -1在更高的载流子浓度 1.35×10 21 cm -3。这表明通过实验更容易获得高性能的n型掺杂MnTe 2。由于2064 m·s -1的低平均声子速度,MnTe 2   在 800 K 时具有 0.72  W  m -1 K -1的低晶格热导率。 几种可能的 n 型掺杂元素的带电点缺陷形成能计算表明 Y 或 La 取代 Mn 原子和 Cl 或 Br 取代 Te 原子最可能的 n 型掺杂点缺陷。结合800 K时0.78×10 21  cm -3的最佳载流子浓度 ,化学计量的A 0.07 Mn 0.93 Te 2 (A = Y, La)和MnTe 1.93 B 0.07(B = Cl, Br) 预计具有达到理论峰值功率因数的高热电性能,电子弛豫时间为 3.05×10 15 μW K -2 cm -1 s -1和晶格热导率为 0.72  W  m -1 K -1

更新日期:2021-11-25
down
wechat
bug