当前位置: X-MOL 学术Soil Biol. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Distribution of soil organic matter fractions are altered with soil priming
Soil Biology and Biochemistry ( IF 9.7 ) Pub Date : 2021-11-22 , DOI: 10.1016/j.soilbio.2021.108494
Oladapo P. Olayemi 1 , Cynthia M. Kallenbach 2 , Matthew D. Wallenstein 1
Affiliation  

Soil organic matter (SOM) plays a central role in mediating soil productivity through its impacts on nutrient cycling and retention, aggregate stability and water retention. Thus, management techniques or technologies including novel soil amendments could benefit farmers through the accumulation of carbon (C) and other nutrients in SOM. However, these same inputs can also lead to accelerated mineralization of native SOM through the process known as priming. This unresolved paradox may be due to the limited understanding of how different SOM fractions respond to priming and in which direction. In this study, we examine the response of functionally distinct SOM fractions to priming when soils are amended with lactobionate, a low molecular weight sugar acid byproduct of cheese manufacturing. Liquid-based 13C lactobionate was added to an agricultural silty loam soil to study its persistence, priming effects, and response of different SOM fractions to lactobionate over 84 days. Cumulative soil carbon dioxide (CO2) was greater in lactobionate-amended soils versus control and by the end of the experiment, 53% of added lactobionate was mineralized. In total, positive priming of 40% of extant SOM was observed from 14 to 84 days. Lactobionate-induced changes to SOM fractions were determined at days 14, 28, 56 and 84 of the incubation to examine if and how priming altered the distribution of C between fast and slow-cycling SOC fractions. In response to lactobionate, the total C content of the water extractable organic matter (WEOM) fraction initially increased by 100% from the dissolved lactobionate we added, but then declined and at a faster rate than other SOM fractions. In addition, the total C of the light-fraction particulate organic matter (LF-POM) fraction also declined. At the same time, we observed total C increases in the slower-cycling sand-sized POM (H-POM) and mineral-associated organic (MAOM) C fractions, in response to lactobionate additions. We also saw a marginal increase in total soil C in the lactobionate-amended soils. Our findings therefore suggest that the application of lactobionate to soils may induce positive priming of the faster cycling LF-POM and WEOM fractions, but also concurrent gains in the H-POM and MAOM C fractions associated with long-term persistence and relative resiliency to disturbance with no net loss of total soil carbon. Thus, the application of low-molecular weight C-based materials such as lactobionate presents an avenue to building more persistent SOM through its impacts on the internal cycling and transformation of SOM fractions.



中文翻译:

土壤有机质组分的分布随着土壤启动而改变

土壤有机质 (SOM) 通过对养分循环和保持、团聚体稳定性和保水的影响,在调节土壤生产力方面发挥着核心作用。因此,包括新型土壤改良剂在内的管理技术或技术可以通过碳 (C) 和其他养分在 SOM 中的积累使农民受益。然而,这些相同的输入也可以通过称为启动的过程加速天然 SOM 的矿化。这个悬而未决的悖论可能是由于对不同 SOM 组分如何响应启动以及在哪个方向上的理解有限。在这项研究中,我们检查了功能不同的 SOM 部分对用乳糖酸(一种奶酪制造的低分子量糖酸副产品)改良土壤时对启动的响应。液基13将乳糖酸 C 加入农用粉质壤土中,以研究其持续性、引发效应以及不同 SOM 组分在 84 天内对乳糖酸的反应。累积土壤二氧化碳 (CO 2) 在乳糖酸盐改良的土壤中与对照相比更大,到实验结束时,53% 的添加的乳糖酸盐被矿化。总的来说,从 14 到 84 天观察到 40% 现存 SOM 的阳性启动。在培养的第 14、28、56 和 84 天确定了乳糖酸诱导的 SOM 组分变化,以检查启动是否以及如何改变快速循环和慢速循环 SOC 组分之间的 C 分布。作为对乳糖酸盐的响应,水可萃取有机物 (WEOM) 部分的总 C 含量最初比我们添加的溶解的乳糖酸盐增加了 100%,但随后下降,并且比其他 SOM 部分下降的速度更快。此外,轻质颗粒有机物(LF-POM)部分的总碳也有所下降。同时,我们观察到循环较慢的砂粒 POM (H-POM) 和矿物相关有机 (MAOM) C 部分的总 C 增加,以响应添加乳糖酸盐。我们还看到在乳糖酸盐改良的土壤中总土壤碳含量略有增加。因此,我们的研究结果表明,将乳糖酸盐应用于土壤可能会导致更快循环的 LF-POM 和 WEOM 组分的正向启动,但也会同时增加 H-POM 和 MAOM C 组分与长期持久性和对干扰的相对弹性有关没有土壤总碳的净损失。因此,低分子量碳基材料(如乳糖酸盐)的应用提供了一条途径,通过其对 SOM 组分的内部循环和转化的影响来构建更持久的 SOM。以响应添加乳糖酸盐。我们还看到在乳糖酸盐改良的土壤中总土壤碳含量略有增加。因此,我们的研究结果表明,将乳糖酸盐应用于土壤可能会导致更快循环的 LF-POM 和 WEOM 组分的正向启动,但也会同时增加 H-POM 和 MAOM C 组分与长期持久性和对干扰的相对弹性有关没有土壤总碳的净损失。因此,低分子量碳基材料(如乳糖酸盐)的应用提供了一条途径,通过其对 SOM 组分的内部循环和转化的影响来构建更持久的 SOM。以响应添加乳糖酸盐。我们还看到在乳糖酸盐改良的土壤中总土壤碳含量略有增加。因此,我们的研究结果表明,将乳糖酸盐应用于土壤可能会导致更快循环的 LF-POM 和 WEOM 组分的正向启动,但也会同时增加 H-POM 和 MAOM C 组分与长期持久性和对干扰的相对弹性有关没有土壤总碳的净损失。因此,低分子量碳基材料(如乳糖酸盐)的应用提供了一条途径,通过其对 SOM 组分的内部循环和转化的影响来构建更持久的 SOM。因此,我们的研究结果表明,将乳糖酸盐应用于土壤可能会导致更快循环的 LF-POM 和 WEOM 组分的正向启动,但也会同时增加 H-POM 和 MAOM C 组分与长期持久性和对干扰的相对弹性有关没有土壤总碳的净损失。因此,低分子量碳基材料(如乳糖酸盐)的应用提供了一条途径,通过其对 SOM 组分的内部循环和转化的影响来构建更持久的 SOM。因此,我们的研究结果表明,将乳糖酸盐应用于土壤可能会导致更快循环的 LF-POM 和 WEOM 组分的正向启动,但也会同时增加 H-POM 和 MAOM C 组分与长期持久性和对干扰的相对弹性有关没有土壤总碳的净损失。因此,低分子量碳基材料(如乳糖酸盐)的应用提供了一条途径,通过其对 SOM 组分的内部循环和转化的影响来构建更持久的 SOM。

更新日期:2021-11-24
down
wechat
bug