当前位置: X-MOL 学术J. Braz. Soc. Mech. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Finite element analysis of different material models for polyurethane elastomer using estimation data sets
Journal of the Brazilian Society of Mechanical Sciences and Engineering ( IF 2.2 ) Pub Date : 2021-11-23 , DOI: 10.1007/s40430-021-03279-9
Mohammad Rauf Sheikhi 1, 2 , Behrang Shamsadinlo 3 , Özgür Ünver 3 , Selim Gürgen 4
Affiliation  

When hyperelastic materials are included in a finite element analysis model, researchers generally have little adequate data to help them achieve their findings. Fortunately, data from tension or compression stress–strain testing are available for mostly researchers. This information must be analyzed and used to hyperelastic model studies. Curve fitting of these data is very crucial for determining the material constants. In the present study, first the experimental data sets were prepared and then used them to examine different hyperelastic material models by ANSYS. Experimental data of uni-axial tension, bi-axial tension, and pure shear tests are required to get an acceptable polynomial fit to the whole data set. Valanis–Landel (VL) method was utilized to estimate the shear and bi-axial data set by using the experimental uni-axial tension and uni-axial compression stress–strain data sets. The finite element analysis of specimens under uni-axial tension and pure shear tests were evaluated using four separate material models (Mooney–Rivlin, Ogden, neo-Hookean, and Gent). Each material model has a different form of strain energy density (SED) function. Constants of material models are extracted using a curve fitting tool utilizing the experimental data sets of uni-axial tension tests and the estimated data set of shear and bi-axial tests. These data sets were applied in different combinations (uni-axial tension + shear, uni-axial tension + bi-axial, shear + bi-axial, uni-axial tension + shear + bi-axial) to discover the material model constants. Finally, the best material model and combination form were selected. The optimal material model and combination form are picked at the end of the research. According to the results, Gent model rises as the best model for uni-axial stress testing, while neo-Hookean is the best choice for pure shear testing.



中文翻译:

使用估计数据集对聚氨酯弹性体的不同材料模型进行有限元分析

当超弹性材料包含在有限元分析模型中时,研究人员通常几乎没有足够的数据来帮助他们实现他们的发现。幸运的是,大多数研究人员都可以获得来自拉伸或压缩应力应变测试的数据。必须分析此信息并将其用于超弹性模型研究。这些数据的曲线拟合对于确定材料常数非常重要。在本研究中,首先准备实验数据集,然后使用它们通过 ANSYS 检验不同的超弹性材料模型。需要单轴拉伸、双轴拉伸和纯剪切试验的实验数据,以获得对整个数据集的可接受的多项式拟合。Valanis-Landel (VL) 方法通过使用实验单轴拉伸和单轴压缩应力-应变数据集来估计剪切和双轴数据集。使用四种单独的材料模型(Mooney-Rivlin、Ogden、neo-Hookean 和 Gent)评估了在单轴拉伸和纯剪切试验下试样的有限元分析。每个材料模型都有不同形式的应变能密度 (SED) 函数。使用曲线拟合工具提取材料模型的常数,该工具利用单轴拉伸试验的实验数据集以及剪切和双轴试验的估计数据集。这些数据集应用于不同的组合(单轴拉伸 + 剪切、单轴拉伸 + 双轴、剪切 + 双轴、单轴拉伸 + 剪切 + 双轴)以发现材料模型常数。最后,选择最好的材料模型和组合形式。在研究结束时选择最佳的材料模型和组合形式。根据结果​​,Gent模型上升为单轴应力测试的最佳模型,而neo-Hookean是纯剪切测试的最佳选择。

更新日期:2021-11-23
down
wechat
bug