当前位置: X-MOL 学术Aquat. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Long-term data show effects of atmospheric temperature anomaly and reservoir size on water temperature, thermal structure, and dissolved oxygen
Aquatic Sciences ( IF 2.4 ) Pub Date : 2021-11-23 , DOI: 10.1007/s00027-021-00835-2
Thomas M. Detmer 1, 2 , Joseph J. Parkos III 1 , David H. Wahl 1
Affiliation  

Predicting changes in reservoir conditions from climatic warming is hindered by the paucity of long-term data on temperature and thermal and oxygen structure replicated across a range of reservoir sizes. The present study characterizes seasonal patterns in temperature, thermal structure, and dissolved oxygen availability in reservoirs, and evaluates how critical periods for aquatic organisms (i.e., periods of maximum temperature and minimum oxygen) for these features are affected by atmospheric temperature anomalies at different time lags. Temperature and dissolved oxygen were measured from May through October at 1 m intervals from surface to bottom for 10 reservoirs sampled between 14 and 21 years during 1995–2016. For most temperature and oxygen metrics July was the period of thermal maxima and oxygen minima across reservoirs, exceptions were thermocline depth, which was static from May through October, and bottom water temperature which peaked in August. Surface water temperature of reservoirs increased 0.6 °C for every 1.0 °C increase in atmospheric temperature in July independent of reservoir area. Although the percentage of water that was oxic in July decreased with increasing July air temperatures, it increased with warming air temperatures from February to April. These long-term data derived patterns highlight the importance of reservoir size and lag periods in building a framework for predicting climate-induced changes in the thermal and oxygen environments of reservoirs, which have important implications for water quality and ecosystem processes and the associated dynamics of reservoir flora and fauna.



中文翻译:

长期数据显示大气温度异常和水库规模对水温、热结构和溶解氧的影响

由于缺乏在各种水库大小范围内复制的温度、热和氧结构的长期数据,因此无法预测气候变暖导致的水库条件变化。本研究描述了水库温度、热结构和溶解氧可用性的季节性模式,并评估了这些特征的水生生物的关键时期(即最高温度和最低氧气的时期)如何受到不同时间大气温度异常的影响滞后。从 5 月到 10 月,以 1 m 的间隔从地表到底部测量了 1995-2016 年间 14 到 21 年间采样的 10 个水库的温度和溶解氧。对于大多数温度和氧气指标,7 月是跨水库的热最大值和氧最小值时期,例外是温跃层深度,从 5 月到 10 月是静态的,底部水温在 8 月达到顶峰。与库区无关,7 月份大气温度每升高 1.0°C,水库地表水温就会升高 0.6°C。尽管 7 月含氧水的百分比随着 7 月气温的升高而下降,但随着 2 月至 4 月气温升高而增加。这些长期数据衍生模式强调了水库规模和滞后期在构建预测气候引起的水库热和氧环境变化的框架方面的重要性,这对水质和生态系统过程以及相关的动态变化具有重要意义。水库动植物群。底水温度在 8 月达到顶峰。与库区无关,7 月份大气温度每升高 1.0°C,水库地表水温就会升高 0.6°C。尽管 7 月含氧水的百分比随着 7 月气温的升高而下降,但随着 2 月至 4 月气温升高而增加。这些长期数据衍生模式强调了水库规模和滞后期在构建预测气候引起的水库热和氧环境变化的框架方面的重要性,这对水质和生态系统过程以及相关的动态变化具有重要意义。水库动植物群。底水温度在 8 月达到顶峰。与库区无关,7 月份大气温度每升高 1.0°C,水库地表水温就会升高 0.6°C。尽管 7 月含氧水的百分比随着 7 月气温的升高而下降,但随着 2 月至 4 月气温升高而增加。这些长期数据衍生模式强调了水库规模和滞后期在构建预测气候引起的水库热和氧环境变化的框架方面的重要性,这对水质和生态系统过程以及相关的动态变化具有重要意义。水库动植物群。7 月大气温度升高 0 °C,与库区无关。尽管 7 月含氧水的百分比随着 7 月气温的升高而下降,但随着 2 月至 4 月气温升高而增加。这些长期数据衍生模式强调了水库规模和滞后期在构建预测气候引起的水库热和氧环境变化的框架方面的重要性,这对水质和生态系统过程以及相关的动态变化具有重要意义。水库动植物群。7 月大气温度升高 0 °C,与库区无关。尽管 7 月含氧水的百分比随着 7 月气温的升高而下降,但随着 2 月至 4 月气温升高而增加。这些长期数据衍生模式强调了水库规模和滞后期在构建预测气候引起的水库热和氧环境变化的框架方面的重要性,这对水质和生态系统过程以及相关的动态变化具有重要意义。水库动植物群。

更新日期:2021-11-23
down
wechat
bug