当前位置: X-MOL 学术Water Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cotransport of micro- and nano-plastics with chlortetracycline hydrochloride in saturated porous media: Effects of physicochemical heterogeneities and ionic strength
Water Research ( IF 12.8 ) Pub Date : 2021-11-21 , DOI: 10.1016/j.watres.2021.117886
Lilin Xu 1 , Yan Liang 2 , Changjun Liao 3 , Tian Xie 3 , Hanbin Zhang 1 , Xingyu Liu 1 , Zhiwei Lu 1 , Dengjun Wang 4
Affiliation  

Global production and use of plastics have resulted in the wide dissemination of micro- and nano-plastics (MNPs) to the natural environment. Potentially acting as a vector, the role of MNPs on the fate and transport of environmental pollutants (e.g., antibiotics such as chlortetracycline hydrochloride; CTC) has garnered global concern recently. Herein, the cotransport of MNPs and CTC in columns packed with uncoated sand or soil colloid-coated sand (SCCS) under different degrees of physicochemical heterogeneity and ionic strength was systematically explored. Our results show that MNPs and CTC inhibit the transport of each other when they coexist. The adsorption of CTC onto sand grains, soil colloids, and MNPs, as well as the aggregation of MNPs in the presence of CTC could be the major contributors to the enhanced retention of CTC and MNPs. In SCCS with different degrees of soil colloid coating, the adsorption of CTC on soil colloids is critical to influence the transport of CTC, and the nonlinear retention of MNPs to soil colloids is mainly attributed to the alteration of collector surface roughness by soil colloids. High ionic strength slightly facilitates CTC transport due to the competition for adsorption sites and the formation of CTC macromolecules, but significantly inhibits MNPs transport by suppressing the electrostatic double layers based on colloid stability theory. Consequently, the cotransport of MNPs and CTC is governed by the coupled interplay of collector surface roughness and chemical heterogeneity, due to the soil colloid coatings and the adsorbed CTC on the surfaces associated with solution chemistries such as ionic strength. Increased cotransport of MNPs and CTC occurred under a higher concentration of MNPs due to a larger number of adsorption sites for CTC. Our findings advance the current understanding of the complex cotransport of MNPs and antibiotics in the environment. This information is valuable for understanding contaminant fate and formulating strategies for environmental remediation due to the contamination of MNPs and co-occurring contaminants.



中文翻译:

微纳米塑料与盐酸金霉素在饱和多孔介质中的共传输:物理化学异质性和离子强度的影响

塑料的全球生产和使用导致微塑料和纳米塑料 (MNP) 广泛传播到自然环境中。MNPs 对环境污染物(例如,抗生素,如盐酸金四环素;CTC)的归宿和运输的潜在作用最近引起了全球关注。在此,系统地探索了在不同程度的物理化学异质性和离子强度下,MNPs 和 CTC 在填充有未包覆沙子或土壤胶体包覆沙子 (SCCS) 的柱中的协同传输。我们的结果表明,当 MNP 和 CTC 共存时,它们会抑制彼此的运输。CTC 在沙粒、土壤胶体和 MNPs 上的吸附,以及在 CTC 存在下 MNPs 的聚集可能是提高 CTC 和 MNPs 保留的主要因素。在土壤胶体包覆程度不同的 SCCS 中,CTC 对土壤胶体的吸附对 CTC 的迁移至关重要,而 MNPs 对土壤胶体的非线性滞留主要归因于土壤胶体对集热器表面粗糙度的改变。由于吸附位点的竞争和 CTC 大分子的形成,高离子强度略微促进了 CTC 的传输,但基于胶体稳定性理论通过抑制静电双层显着抑制了 MNP 的传输。因此,由于土壤胶体涂层和吸附在表面上的 CTC 与溶液化学物质(如离子强度)有关,因此 MNP 和 CTC 的协同传输受收集器表面粗糙度和化学异质性的耦合相互作用控制。由于更多的 CTC 吸附位点,MNPs 和 CTC 的共转运增加发生在更高浓度的 MNPs 下。我们的发现推进了目前对环境中 MNP 和抗生素的复杂协同转运的理解。由于 MNP 和共存污染物的污染,这些信息对于了解污染物归宿和制定环境修复策略非常有价值。

更新日期:2021-11-30
down
wechat
bug