当前位置: X-MOL 学术EPJ Quantum Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Airborne quantum key distribution with boundary layer effects
EPJ Quantum Technology ( IF 5.3 ) Pub Date : 2021-11-19 , DOI: 10.1140/epjqt/s40507-021-00115-w
Hui-Cun Yu 1, 2 , Yang Xue 1 , Jie Tang 1, 2 , Lei Shi 1 , Bo Liu 2 , Bang-Ying Tang 3 , Wan-Rong Yu 3 , Huan Chen 4
Affiliation  

With the substantial progress of terrestrial fiber-based quantum networks and satellite-based quantum nodes, airborne quantum key distribution (QKD) is now becoming a flexible bond between terrestrial fiber and satellite, which is an efficient solution to establish a mobile, on-demand, and real-time coverage quantum network. However, the random distributed boundary layer is always surrounded to the surface of the aircraft when the flight speed larger than 0.3 Ma, which would introduce random wavefront aberration, jitter and extra intensity attenuation to the transmitted photons. In this article, we propose a performance evaluation scheme of airborne QKD with boundary layer effects. The analyzed results about the photon deflection angle and wavefront aberration effects, show that the aero-optical effects caused by the boundary layer can not be ignored, which would heavily decrease the final secure key rate. In our proposed airborne QKD scenario, the boundary layer would introduce ∼3.5 dB loss to the transmitted photons and decrease ∼70.9% of the secure key rate. With tolerated quantum bit error rate set to 8%, the suggested quantum communication azimuth angle between the aircraft and the ground station is within 55∘. Furthermore, the optimal beacon laser module and adaptive optics module are suggested to be employed, to improve the performance of airborne QKD system. Our detailed airborne QKD performance evaluation study can be performed to the future airborne quantum communication designs.

中文翻译:

具有边界层效应的机载量子密钥分布

随着地面光纤量子网络和星基量子节点的实质性进展,机载量子密钥分发(QKD)正在成为地面光纤和卫星之间的灵活纽带,是建立移动、按需,以及实时覆盖量子网络。然而,当飞行速度大于0.3 Ma时,随机分布的边界层总是围绕在飞机表面,这会给传输的光子引入随机波前像差、抖动和额外的强度衰减。在本文中,我们提出了一种具有边界层效应的机载 QKD 性能评估方案。光子偏转角和波前像差效应的分析结果,表明边界层引起的气动光学效应不容忽视,这将大大降低最终的安全密钥率。在我们提出的机载 QKD 方案中,边界层会给传输的光子引入 ~3.5 dB 的损失,并降低 ~70.9% 的安全密钥率。将容许量子误码率设置为8%,建议飞机与地面站之间的量子通信方位角在55∘以内。此外,建议采用最优的信标激光模块和自适应光学模块,以提高机载QKD系统的性能。我们详细的机载 QKD 性能评估研究可用于未来的机载量子通信设计。边界层会给传输的光子引入 ~3.5 dB 的损耗,并降低 ~70.9% 的安全密钥率。将容许量子误码率设置为8%,建议飞机与地面站之间的量子通信方位角在55∘以内。此外,建议采用最优的信标激光模块和自适应光学模块,以提高机载QKD系统的性能。我们详细的机载 QKD 性能评估研究可用于未来的机载量子通信设计。边界层会给传输的光子引入 ~3.5 dB 的损耗,并降低 ~70.9% 的安全密钥率。将容许量子误码率设置为8%,建议飞机与地面站之间的量子通信方位角在55∘以内。此外,建议采用最优的信标激光模块和自适应光学模块,以提高机载QKD系统的性能。我们详细的机载 QKD 性能评估研究可用于未来的机载量子通信设计。建议采用最优的信标激光模块和自适应光学模块,以提高机载QKD系统的性能。我们详细的机载 QKD 性能评估研究可用于未来的机载量子通信设计。建议采用最优的信标激光模块和自适应光学模块,以提高机载QKD系统的性能。我们详细的机载 QKD 性能评估研究可用于未来的机载量子通信设计。
更新日期:2021-11-19
down
wechat
bug