当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sum-Rate Maximization for Multi-Reconfigurable Intelligent Surface-Assisted Device-to-Device Communications
IEEE Transactions on Communications ( IF 8.3 ) Pub Date : 2021-08-20 , DOI: 10.1109/tcomm.2021.3106334
Yashuai Cao , Tiejun Lv , Wei Ni , Zhipeng Lin

This paper proposes to deploy multiple reconfigurable intelligent surfaces (RISs) in device-to-device (D2D)-underlaid cellular systems. The uplink sum-rate of the system is maximized by jointly optimizing the transmit powers of the users, the pairing of the cellular users (CUs) and D2D links, the receive beamforming of the base station (BS), and the configuration of the RISs, subject to the power limits and quality-of-service (QoS) of the users. To address the non-convexity of this problem, we develop a new block coordinate descent (BCD) framework which decouples the D2D-CU pairing, power allocation and receive beamforming, from the configuration of the RISs. Specifically, we derive closed-form expressions for the power allocation and receive beamforming under any D2D-CU pairing, which facilitates interpreting the D2D-CU pairing as a bipartite graph matching solved using the Hungarian algorithm. We transform the configuration of the RISs into a quadratically constrained quadratic program (QCQP) with multiple quadratic constraints. A low-complexity algorithm, named Riemannian manifold-based alternating direction method of multipliers (RM-ADMM), is developed to decompose the QCQP into simpler QCQPs with a single constraint each, and solve them efficiently in a decentralized manner. Simulations show that the proposed algorithm can significantly improve the sum-rate of the D2D-underlaid system with a reduced complexity, as compared to its alternative based on semidefinite relaxation (SDR).

中文翻译:

多重可重构智能表面辅助设备到设备通信的和速率最大化

本文建议在设备到设备 (D2D) 底层蜂窝系统中部署多个可重构智能表面 (RIS)。通过联合优化用户发射功率、蜂窝用户(CU)和D2D链路的配对、基站(BS)的接收波束成形以及RIS的配置,使系统的上行总速率最大化,受用户的功率限制和服务质量 (QoS) 限制。为了解决这个问题的非凸性,我们开发了一种新的块坐标下降 (BCD) 框架,该框架将 D2D-CU 配对、功率分配和接收波束成形与 RIS 的配置分离。具体来说,我们推导出功率分配和接收波束成形的闭式表达式,在任何 D2D-CU 配对下,这有助于将 D2D-CU 配对解释为使用匈牙利算法求解的二部图匹配。我们将 RIS 的配置转换为具有多个二次约束的二次约束二次程序 (QCQP)。开发了一种称为基于黎曼流形的乘法器交替方向法 (RM-ADMM) 的低复杂度算法,用于将 QCQP 分解为每个具有单个约束的更简单的 QCQP,并以分散的方式有效地求解它们。仿真表明,与基于半定松弛 (SDR) 的替代算法相比,所提出的算法可以显着提高 D2D 底层系统的总和率,同时降低复杂度。我们将 RIS 的配置转换为具有多个二次约束的二次约束二次程序 (QCQP)。开发了一种称为基于黎曼流形的乘法器交替方向法 (RM-ADMM) 的低复杂度算法,用于将 QCQP 分解为每个具有单个约束的更简单的 QCQP,并以分散的方式有效地求解它们。仿真表明,与基于半定松弛 (SDR) 的替代算法相比,所提出的算法可以显着提高 D2D 底层系统的总和率,同时降低复杂度。我们将 RIS 的配置转换为具有多个二次约束的二次约束二次程序 (QCQP)。开发了一种称为基于黎曼流形的乘法器交替方向法 (RM-ADMM) 的低复杂度算法,用于将 QCQP 分解为每个具有单个约束的更简单的 QCQP,并以分散的方式有效地求解它们。仿真表明,与基于半定松弛 (SDR) 的替代算法相比,所提出的算法可以显着提高 D2D 底层系统的总和率,同时降低复杂度。并以分散的方式有效地解决它们。仿真表明,与基于半定松弛 (SDR) 的替代算法相比,所提出的算法可以显着提高 D2D 底层系统的总和率,同时降低复杂度。并以分散的方式有效地解决它们。仿真表明,与基于半定松弛 (SDR) 的替代算法相比,所提出的算法可以显着提高 D2D 底层系统的总和率,同时降低复杂度。
更新日期:2021-08-20
down
wechat
bug