当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Single-Shot High-Throughput Phase Imaging with Multibeam Array Interferometric Microscopy
ACS Photonics ( IF 7 ) Pub Date : 2021-11-18 , DOI: 10.1021/acsphotonics.1c01124
Jie Dong 1 , Ali K. Yetisen 1 , Chen Zhao 2 , Xingchen Dong 1 , Franziska Brändle 1 , Qi Wang 1 , Martin Jakobi 1 , Dieter Saur 2, 3 , Alexander W. Koch 1
Affiliation  

High-throughput microscopic imaging is highly desirable in biomedical applications. Advances in computational microscopy have achieved high space-bandwidth products and even permitted gigapixel imaging in a stepwise fashion, yet temporal resolution remains challenging for investigating live-sample dynamics. Here, we report multibeam array interferometric microscopy (MAIM) for a single-shot high space-bandwidth product. The MAIM method overcomes the limitations of conventional digital holographic microscopy, providing complex field reconstruction with a maximum 5-fold field of view (FOV) increase in a single camera acquisition, while maintaining sub-nanometer optical path-length stability. This is achieved by integrating common-path holographic microscopy, multibeam interference technology, and holographic multiplexing technology. The temporal resolving power of MAIM is significantly higher than that of computational illumination microscopy. MAIM has major advantages over previous holographic multiplexing techniques in that it integrates more wavefronts and offers high temporal stability. The fundamentals of MAIM are analyzed theoretically. As a demonstration, we build MAIM prototypes to increase the FOV by factors of 5, 4, and 3, respectively. We present proof-of-concept MAIM imaging results of both natural and artificial samples and show biomedical applications such as monitoring sub-cellular dynamical phenomena in flowing live erythrocytes in vitro and label-free microrefractometry imaging of unstained cancer tissue slices. MAIM gives rise to (ultra)fast or long-term (time-lapse) imaging of nanoscale dynamics of unstained live samples in vitro with a high throughput.

中文翻译:

使用多光束阵列干涉显微镜进行单次高通量相位成像

在生物医学应用中非常需要高通量显微成像。计算显微镜的进步已经实现了高空间带宽产品,甚至允许以逐步方式进行千兆像素成像,但时间分辨率对于研究活样本动力学仍然具有挑战性。在这里,我们报告了单次高空间带宽产品的多光束阵列干涉显微镜 (MAIM)。MAIM 方法克服了传统数字全息显微镜的局限性,在单个相机采集中提供了最大 5 倍视场 (FOV) 增加的复杂场重建,同时保持了亚纳米光路长度的稳定性。这是通过集成共路径全息显微镜、多光束干涉技术和全息复用技术来实现的。MAIM 的时间分辨能力明显高于计算照明显微镜。MAIM 与以前的全息复用技术相比具有主要优势,因为它集成了更多波前并提供了高时间稳定性。从理论上分析了 MAIM 的基本原理。作为演示,我们构建了 MAIM 原型以分别将 FOV 增加 5、4 和 3 倍。我们展示了自然和人工样品的概念验证 MAIM 成像结果,并展示了生物医学应用,例如监测流动的活红细胞中的亚细胞动力学现象 MAIM 与以前的全息复用技术相比具有主要优势,因为它集成了更多波前并提供了高时间稳定性。从理论上分析了 MAIM 的基本原理。作为演示,我们构建了 MAIM 原型以分别将 FOV 增加 5、4 和 3 倍。我们展示了自然和人工样品的概念验证 MAIM 成像结果,并展示了生物医学应用,例如监测流动的活红细胞中的亚细胞动力学现象 MAIM 与以前的全息复用技术相比具有主要优势,因为它集成了更多波前并提供了高时间稳定性。从理论上分析了 MAIM 的基本原理。作为演示,我们构建了 MAIM 原型以分别将 FOV 增加 5、4 和 3 倍。我们展示了自然和人工样品的概念验证 MAIM 成像结果,并展示了生物医学应用,例如监测流动的活红细胞中的亚细胞动力学现象未染色癌组织切片的体外和无标记显微折射成像。MAIM以高通量在体外对未染色活样品的纳米级动力学进行(超)快速或长期(延时)成像。
更新日期:2021-12-15
down
wechat
bug