当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the Electrocatalytic Conversion of Nitrogen to Ammonia on Metal-Phthalocyanine-Based Two-Dimensional Conjugated Covalent Organic Frameworks
Journal of the American Chemical Society ( IF 15.0 ) Pub Date : 2021-11-16 , DOI: 10.1021/jacs.1c11158
Haixia Zhong , Mingchao Wang , Mahdi Ghorbani-Asl 1 , Jichao Zhang 2 , Khoa Hoang Ly , Zhongquan Liao 3 , Guangbo Chen , Yidan Wei 1 , Bishnu P Biswal 4 , Ehrenfried Zschech 3 , Inez M Weidinger , Arkady V Krasheninnikov 1, 5 , Renhao Dong 6 , Xinliang Feng 7
Affiliation  

The electrochemical N2 reduction reaction (NRR) under ambient conditions is attractive in replacing the current Haber-Bosch process toward sustainable ammonia production. Metal-heteroatom-doped carbon-rich materials have emerged as the most promising NRR electrocatalysts. However, simultaneously boosting their NRR activity and selectivity remains a grand challenge, while the principle for precisely tailoring the active sites has been elusive. Herein, we report the first case of crystalline two-dimensional conjugated covalent organic frameworks (2D c-COFs) incorporated with M–N4–C centers as novel, defined, and effective catalysts, achieving simultaneously enhanced activity and selectivity of electrocatalytic NRR to ammonia. Such 2D c-COFs are synthesized based on metal-phthalocyanine (M = Fe, Co, Ni, Mn, Zn, and Cu) and pyrene units bonded by pyrazine linkages. Significantly, the 2D c-COFs with Fe–N4–C center exhibit higher ammonia yield rate (33.6 μg h–1 mgcat–1) and Faradaic efficiency (FE, 31.9%) at −0.1 V vs reversible hydrogen electrode than those with other M–N4–C centers, making them among the best NRR electrocatalysts (yield rate >30 μg h–1 mgcat–1 and FE > 30%). In situ X-ray absorption spectroscopy, Raman spectroelectrochemistry, and theoretical calculations unveil that Fe–N4–C centers act as catalytic sites. They show a unique electronic structure with localized electronic states at Fermi level, allowing for stronger interaction with N2 and thus faster N2 activation and NRR kinetics than other M–N4–C centers. Our work opens the possibility of developing metal–nitrogen-doped carbon-rich 2D c-COFs as superior NRR electrocatalyst and provides an atomic understanding of the NRR process on M–Nx–C based electrocatalysts for designing high-performance NRR catalysts.

中文翻译:

在基于金属-酞菁的二维共轭共价有机骨架上促进氮向氨的电催化转化

环境条件下的电化学 N 2还原反应 (NRR) 在取代当前的 Haber-Bosch 工艺以实现可持续氨生产方面具有吸引力。金属杂原子掺杂的富碳材料已成为最有前途的 NRR 电催化剂。然而,同时提高它们的 NRR 活性和选择性仍然是一个巨大的挑战,而精确定制活性位点的原则一直难以捉摸。在此,我们报告了第一个与 M-N 4 -C 中心结合的结晶二维共价有机骨架 (2D c- COFs)作为新型、明确和有效的催化剂,同时提高了电催化 NRR 的活性和选择性。氨。这样的 2D c-COF 是基于金属-酞菁(M = Fe、Co、Ni、Mn、Zn 和 Cu)和通过吡嗪键键合的芘单元合成的。值得注意的是,与可逆氢电极相比,具有 Fe-N 4 -C 中心的 2D c -COF在 -0.1 V 与可逆氢电极下表现出更高的氨产率(33.6 μg h -1 mg cat -1)和法拉第效率(FE,31.9%)与其他 M–N 4 –C 中心,使它们成为最好的 NRR 电催化剂(产率 >30 μg h –1 mg cat –1和 FE > 30%)。原位 X 射线吸收光谱、拉曼光谱电化学和理论计算揭示了 Fe-N 4-C 中心充当催化位点。它们显示出一种独特的电子结构,在费米能级具有局部电子态,允许与 N 2更强的相互作用,从而比其他 M-N 4 -C 中心更快的 N 2活化和 NRR 动力学。我们的工作开辟了将金属-氮掺杂的富碳二维c - COFs 开发为卓越的 NRR 电催化剂的可能性,并提供了对基于 M-N x -C 的电催化剂的 NRR 过程的原子理解,以设计高性能 NRR 催化剂。
更新日期:2021-12-01
down
wechat
bug